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UNIFORM DIMENSION OF MAPPINGS 

(Preliminary communication) 

Jan HEJGMAN, Praha 

By the dimension of a mapping f : P —> Q , where P, 

Q: are topological spaces, the number sup{dimf~fy] ; 

y € Q} is usually understood* Some authors consider in a 

certain sense stronger definitions of the dimension of 

mappings for metric spaces, e*g* uniformly zero-dimensio

nal mappings [2] or, as a generalization, the strong di

mension of mappings [5]. We define the uniform dimension 

of uniformly continuous mappings for uniform spaces* It is 

closely connected with the uniform dimension A d (seeflj). 

For uniform spaces, we use the terminology of [3j. If 

(X,16) is a uniform space, U € % , X is a collection 

of subsets of X , we say that % is U-discrete if 

U [Kjn L -» 0 for any K , L in % , K + L 5 we say 

that % is a U-cover of a subset II of X , if for each 

point x of M there exists a. K in $C such that 

B[x] A I c K , Further, all mappings aire supposed to be 

uniformly continuous* « 

Definition., Let (X, % ) , (X, V ) be uniform spaces, 

f : X —> T a mapping* The uniform dimension of f is de

fined as the smallest non-negative Integer n with the fol

lowing property: for eaoh U in 16 there exist V in If 

and W in % such that, if M is a. subset of X and 

- 381 -



M x M c V | then there exists a collection CfC of subsets 

of X such that 3C i s a W-cover of f~'fMj, X ^ K c U 

for each K in X , and each point x of t"1 [Ml la 

contained in at most n + 1 sets of CfC • The uniform 

dimension of f wi l l be denoted by A d f • If such a 

number n does not exist we set A d f » oo • 

It i s easy to prove that the definition may be expres

sed in a formally stronger manner, in that the collection 

% may be supposed to be the union of n + 1 W-discrete 

aubcollections. 

First we introduce some elementary properties of A d f • 

If X i s a non-void uniform.space, S i s a one-point spa

ce i f : X —¥ S i s a mapping, then A & t i s equal to 

the mentioned A d-dimension of the space X ; shortly 

A d f » 4 d X , Thus A d-dimension of a uniform space 

may be considered as the A d-dimension of a certain map

ping. If X, I are uniform spaces, f : X —•y X i s a map

ping, Y' i s a subspace of Y such that Y'.o f [ X] and 

t' a f : X -¥ I* , then A d f -* A d f * • If g i s the 

restriction of a mapping f then / i d g i / i d f . I f j 

Is a uniform embedding then A d :j * 0 . 

Theorem 1. Let X, Y be non-void uniform spaces, p 

the canonical projection of X x Y onto X • Then A d p * 

* A d X . 

Theorem 2. Let X, Y l?e uniform spaces, f : X —• Y f 

g the restriction of f to a dense subspace of X • Then 

A * t * A d g • 

Every compact space has a uniquely determined unifor

mity and every continuous mapping i s uniformly continuous* 
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Theorem 3« Let X, X be compact Hauadorff spaces, 

f : X —* X . Then A d f 6 n i f and only if 

dim t'* CxJ i a for a l l y in X • 

The following theorems concern some non-trivial pro

perties of the uniform dimension of mappings* 

Theorem 4« Let Xf Xf Z be uniform spaces, f * X~* 

- * X , g J X -* Z • Then A d(g o f ) ^ ^ d f • A d g. 

From Theorem 4 we obtain immediately 

Theorem 5. Let Xf X be uniform spaces, f : X—> X • 

Then A d X £ < A d X * A d f , 

Theorem 6. Let { X^ ; rf, e A J f { X^ ; oc e A J be fa 

milies of uniform spaces, { f^ ; ac c A/ a family of map

pings, fx I X^ —> X^ • Let f : TT-f X^ ; at 6 A} - » 

—» TT {X^ | oc € A? be defined by the formula f {^im 

*<**, afcc? • T h « n ^ a f at Z A d f^ . 

If x i s a uniform space and (Rf p ) i s a me trie 

space, we shall denote by C^(X, R) the set of a l l uni

formly continuous mappings of X into R , endowed with 

the distance & defined by 

ff (f, g) » min (1, sup {f (fx, gx) ; x e X} ) . If B 

i s complete, then C^(X, R) i s also a complete metric 

space. The following theorem (which i s f i rs t proved for 

k =* 0 ) characterizes the dimension A d of peeudomet-

ric spaces by means of mappings into Euclidean spaces* 

Theorem 7. Let P be a pseudometrie space, k, n 

integers, O a k a n • Then the following properties are 

equivalent -

(1) A d P 4 n , 
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(2) there exists a mapping f : P —» \_j^ with 

A d f ( i k , 

(3) the aet of a l l mappings t z ¥ -+ fi^.^ with 

<d d f s k is a dense (L» -set in the space 

c i i , ( p t * * - * , > • 

It oan be proved that the assumption of pseudpmetrizabi-

l i t y of P i s essential even for the implication (l)=»->(2). 

Thus every metric space with finite dimension A d can be 

mapped by a uniformly zero-dimensional mapping into a com

pact space (e.g. into the Hilbert cube). One may ask whet

her th is holds for any metric space. We shall show that the 

answer i s negative* First, let us introduce a theorem of an

other character, which i s also concerned with the equality 

of the dimensions A d and cTd (see [43 or [1 ] ) . 

Theorem 8. Let a uniform space (X, V ) have the f o l 

lowing property: 

(f) for each V in V there exist a' uniform cover X of 

X and a number n such that K x K c V for each E in 

% , and each point of X i s contained in at most n 

sets ,of X • 

--iet X be a uniform space and f : X X a mapping with 

f in i t e A d f • Then the apace X also has the property (f)« 
If m uniform space X fu l f i l s condition ( f ) , then 

A d Z i cTd X • Condition (f) i s t r iv ia l ly ful f i l led by 

compaot spaoes. Combining Theorems 8 and 6 we obtain, for 

example, this result: If a uniform space X admits a uni

formly finite-dimensional mapping into a product of spaces* 

with f in i te A d and a compact space, then A d X • d~d X. 
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Suppose that for every metric space P there exists a 

uniformly zero-dimensional mapping of P into a compact 

space. Consider a uniform space X with cTd X < A d X 

(see Ш)« The spaee X can be embedded Into a product of 

metric spaces. This product has a* uniformly zero-dimensio

nal mapping into some compact space (by Theorem 6) . But 

then we obtain Д d X » cT dX , a contradiction» 

R e f e r e n c e s : 

[ l l J.R. ISBELL, On finite-dimensional uniform spaces. 

Pacific J.Math.9(l959),Ю7-121. 

[2] M. КАТЕТОВ, О размерности иесепарабельинх пространств, 

Чехосл. мат. журнал 2(77)(1952),333-368. 

t i l J.L. ШДЛЗХ, General Topology, New York 1955* 

[4] Ю.М. СМИРНОВ, 0 раемерности пространств близости, 

Матем.сборник 38(80}(1956),283-302. 

[5] М.Л. ШЕРСНЕВ, Характеристика размерности метричес

кого пространства при помощи размер

но стных свойств его отображений в эв

клидовы пространства, Матем.сборник 60 

(108) (1963), 207-218. 

(Received September 13у1965) 

385 -


		webmaster@dml.cz
	2012-04-27T16:04:05+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




