Commentationes Mathematicae Universitatis Caroline

Jaroslav Ježek
On atoms in lattices of primitive classes

Commentationes Mathematicae Universitatis Carolinae, Vol. 11 (1970), No. 3, 515--532
Persistent URL: http://dml.cz/dmlcz/105295

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

 11, 3 (1970)ON ATOMS IN LATTICES OF PRIMITIVE CLASSES Jaroslav JEŽEK, Praha

This paper is a continuation of my papers [2] and [3] on lattices \mathscr{U}_{Δ} (of all primitive classes of algebras of type Δ). For the terminology see [3]. We shall be concerned with atoms in \mathscr{E}_{Δ}. It is well-known (see [1]) that every \mathscr{L}_{Δ} is atomic.

In § 1, Theorem 1, a complete answer to the following question (Grätzer's problem 33 in [1] is given: find the number of atoms in $\mathscr{\mathscr { L }}_{\Delta}$, for ail types $\boldsymbol{\Delta}$.

For any complete atomic lattice L we can define, in a natural way, an element of L : the supremum of the set of all atoms of L. If $L=\mathcal{E}_{\Delta}$, then every element of L determines a primitive class of algebras of type Δ and we may ask to describe the primitive class determined by the supremum of atoms. The description depends on whether $\boldsymbol{\Delta}$ contains or does not contain at least binary operations. The description is found in Theorems 2 and 3.

For the terminology and notation see § 1 of [3]. As in [3], we fix an infinitely countable set X and for each type Δ an absolutely free algebra W_{Δ} of type Δ. If A is an algebra of type $\Delta=\left(m_{i}\right)_{i \in I}$
and $i \in I$, then the i-th fundamental operation of \mathcal{A} is denoted by $f_{i}^{(A)}$; the i-th fundamental 0 peration of W_{A} is denoted by f_{i}. If $m_{i}=0$, then f_{i} is an element of W_{Δ}.

Elements of W_{Δ} are called Δ-terms. A Δ term w is called constant if $X \cap S(w)$ is empty (the set $S(w)$ is the set of all subwords of w, defined in [3]). A Δ-term is evidently constant, if and only if it belongs to the subalgebra of $W_{\Delta} g e-$ nerated by the empty set.

A Δ-equation $\left\langle w_{1}, w_{2}\right\rangle$ is called constant if w_{1} and w_{2} are constant Δ-terms.

Let a type $\Delta=\left(n_{i}\right)_{i \in I}$ be given. Elements $i \in$ $\in I$ such that $n_{f}=1$ are called unary symbols (of $\boldsymbol{\Delta}$). A Pinite (not necessarily nonempty) sequence of unary symbols is called unary sequence. If A is an algebra of type $\Delta, a \in A$ and $A=A_{1}, \ldots, A_{n}$ is a unary sequence, then a^{*} is defined in this way: $a^{h}=a$ if $力$ is empty; $a^{A_{1}, \ldots, t_{m}}=f_{A_{m}}^{(A)}\left(a^{A_{1}, \ldots, A_{m-1}}\right)$. If $t=D_{1}, \ldots, t_{n}$ and $t=t_{1}, \ldots, t_{m}$ are two unary sequences, then st is the unary sequence s_{1}, \ldots, t_{m}, t_{1}, \ldots, t_{m}.

If Δ is a type, then \mathscr{L}_{Δ} is the dual of the lattice of 11 FI -congruence relations of W_{4}. Let us denote the greatest element of \mathscr{L}_{Δ} by $\mathcal{1}_{\mathscr{L}_{\Delta}}$ and the smallest by $\mathrm{O}_{\mu_{A}}$.
$A \quad \Delta$-theory E is called consistent if
$C m(E) \neq O_{x_{\Delta}}$, i.e.if E has a non-trivial model; "inconsistent" means "not consistent".
§ 1. The number of atoms in lattices \mathscr{L}_{Δ}
Given a type Δ, denote by $\operatorname{AT}(\Delta)$ the cardinality of the set of all atoms in \boldsymbol{L}_{Δ}.

Lemma 1. Let $\Delta=\left(n_{i}\right)_{i \in I}$ where $I=\left\{i_{1}, i_{2}\right\}$, $i_{1} \neq i_{2}$ and $n_{i_{1}}=n_{i_{2}}=1$. Then $A T(\Delta)=2^{x_{0}}$.

Proof. It is sufficient to prove $A T(\Delta) \geq 2^{x_{0}}$. Denote i_{1} by 1 and i_{2} by + . If \mathcal{A} is an algebra of type Δ and $a \in A$, then $a^{\prime}=\mathcal{f}_{i_{1}}^{(A)}(a)$ and $a^{+}=f_{i_{2}}^{(A)}(a)$. Let x and y be two different alements of X. Denote by M the set of all infinite sequences $e=\left\langle e_{1}, e_{2}, e_{3}, \ldots\right\rangle$ of numbers 0 and 1, so that M has $2^{H_{0}}$ elements. For each $e \in M$ define a Δ-theory E_{e} : it contains all equations $\left\langle x^{+1+1}, y^{+1+1 \mid}\right\rangle \quad$ where n is such that $e_{n}=0$ and all equations $\left\langle x, x^{+1 / n}\right\rangle$ where n is such that $e_{n}=1$. (Here $\underset{F}{ }$ denotes the sequence contairing n symbols $+\cdots$ If e_{1} and e_{2} are two different elements of M, then $E_{e_{1}} \cup E_{e_{2}}$ is evidently inconsistent; as \mathscr{L}_{Δ} is an atomic lattice, it is surficient to prove that every E_{e} is consistent. Let e $\in \mathcal{M}$.

Denote by \mathcal{A} the set of all ordered pairs
$\langle\ell, n\rangle$ where $n \geq 1$ is a rational number and ℓ
is either 0 or 1 . Let us fix a one-to-one mapping φ of the set of all rational numbers $n \geq 1$ onto the set of all rational numbers q such that $1 \leq q<2$. Define an algebra A_{e} with the underlying set A in this way:

$$
\begin{equation*}
\langle 0, \kappa\rangle^{+}=\langle 1, \varphi(\kappa)\rangle ; \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\langle 1, n\rangle^{+}=\langle 1, n+1\rangle ; \tag{ii}
\end{equation*}
$$

(iii) $\langle 1, n\rangle=\langle 0, n\rangle$;
(iv) If $n \leq n<n+1$ and $e_{n}=0$, then $\langle 0, r\rangle^{\prime}=$ $=\langle 0, n\rangle$;
(v) Let $n \leq n<n+1$ and $e_{n}=1$. If $\rho^{-1}(n-n+$ $+1)<2$, put $\langle 0, \kappa\rangle^{\prime}=\left\langle 0, \varphi^{-1}\left(\varphi^{-1}(\pi-n+1)\right)\right\rangle$.
If $\varphi^{-1}(n-n+1) \geq 2$, put $\langle 0, n\rangle^{\prime}=\left\langle 1, \varphi^{-1}(n-m+1)-1\right\rangle$.
We shall prove that A_{e} is a model of E_{e}. Let an integer $n \geq 1$ be given.

Let $e_{n}=0$. Let $a \in A$. There exists an $n<2$ such that $a^{+1+}=\langle 1, r\rangle$. We have $a^{+1++^{n-1}} \approx\langle 1$, $r+$ $+n-1\rangle$ where $n \leq n+n-1<n+1$, so that $a^{+1+\|}=\langle 0, n\rangle$. Hence, $\left\langle x^{+1+n}, y^{+1+\|}\right\rangle$ is valid in A_{e}.

Let $e_{n}=1$. Let $a \in A$. If $a=\langle 0, n\rangle$, then $a^{+1 \ddagger 1}=\langle 0, \varphi(\varphi(\kappa))+n-1\rangle ;$ as $n \leqslant \varphi(\varphi(k))+n-$ $-1<n+1$ and $\varphi^{-1}(\varphi(\varphi(n))+n-1-n+1)=\varphi(n)<2$, we get $a^{+1+n}=\left\langle 0, \varphi^{-1}\left(\varphi^{-1}(\varphi(\varphi(n))+n-1+1)\right)\right\rangle=\langle 0, k\rangle=a$. If $a=\langle 1, k\rangle$, then $a^{+1+1}=\langle 0,9(n+1)+n-1\rangle$; as
$n \leqslant \varphi(n+1)+n-1<n+1$ and $\varphi^{-1}(\varphi(n+1)+n-1-n+1)=n+1 \geq 2$, we get $a^{+1+n}=\left\langle 1, \varphi^{-1}(\varphi(n+1)+n-1-n+1)-1\right\rangle=\langle 1, n\rangle=a$. Hence, $\left\langle x, x^{+1+\pi} \|\right\rangle$ is valid in A_{e}.

Lemma 2. Let $\Delta=\left(n_{i}\right)_{i \in I}$ where $n_{i} \leqslant 1$ for all $i \in I$. If α is a constant Δ-equation and A an atom in \mathscr{L}_{Δ}, then $\alpha \in \mathcal{A}$.

Proof. Let C be the set of all $w \in W_{A}$ such that $\langle w, \bar{w}\rangle \in \mathcal{A}$ for some constant Δ-term \bar{w}. It is easy to prove that $A \cup(C \times C)$ is a FI-congruence relation of W_{Δ} and $A \cup(C \times C) \neq O_{e_{\Delta}}$. As A is an atom, we set $A=A \cup(C \times C)$, i.e. $C \times C \subseteq A$. Each constant Δ-equation belongs to $C \times C$.

Lemma 3. Let $\Delta=\left(n_{i}\right)_{i \in 1}$ where $n_{i} \geq 1$ for all $i \in I$. If I is infinite, then $A T(\Delta)=2^{\text {cand } I}$.

Proof. It is sufficient to prove $A T(\Delta) \geq 2^{\text {cand } I .}$ Let x and y be two different elements of X. For each subset M of I define a-theory E_{M} in this way: it contains all equations $\left\langle x, f_{i}(x, \ldots, x)\right\rangle$ where $i \in M$ and all equations $\left\langle f_{i}(x, \ldots, x), f_{i}(y, \ldots, y)\right\rangle$ where $i \in I-M$. Evidently, each E_{M} is consistent, so that there exists an atom \mathcal{A}_{M} in \mathcal{L}_{Δ} such that $A_{M} \vdash E_{M}$. If M_{1} and M_{2} are two different subsets of I, then $E_{M_{1}} \cup E_{M_{2}}$ is evidently inconsistent, so that $A_{M_{1}} \neq A_{M_{2}}$. There are $2^{\text {cidd } I}$ different subsets of I.

Lemma 4. Let $\Delta=\left(n_{i}\right)_{i \in I} ;$ let there exist an $i_{0} \in I$ such that $n_{i_{0}}=1$ and $n_{i}=0$ for all $i \in I-\left\{i_{0}\right\}$. Then $A T(\Delta)=2$. If C is the set of all constant Δ-equations and x, y two different elements of X, then the two atoms of \mathcal{Z}_{Δ} are just $C_{m}\left(C \cup\left\{<x, f_{i_{0}}(x)>\right\}\right)$ and $C_{m}\left(C \cup\left\{<f_{i}(x)\right.\right.$, $\left.f_{i_{0}}(y)>z\right)$.

Proof is easy; for the complete description of \mathscr{L}_{Δ} in this case see [2].

Theorem 1. Let a type $\Delta=\left(m_{i}\right)_{i \in I}$ be given. (i) Let $n_{i} \leq 1$. for all $i \in I$; put $M=$ Card $\{i \in I$; $\left.n_{i}=1\right\}$. If $m=0$, then $A T(\Delta)=1$. If $m=1$, then $A T(\Delta)=2$. If $2 \leqslant \mu<x_{0}$, then $A T(\Delta)=2^{x_{0}}$. If m is infinite, then $A T(\Delta)=2^{m}$.
(ii) Let there exist on $i_{0} \in I$ such that $n_{i_{0}} \geq 2$. If I is finite, then $A T(\Delta)=2^{x_{0}}$. If I is infonite, then $A T(\Delta)=2^{\text {land } I}$.
proof. Let $n_{\ell} \leqslant 1$ for all $i \in 1$. If $\mu=0$, the assertion is easy, and if $m=1$, it follows from Lemma 4. Let $m \geq 2$. By Lemma 2 , if $i, j \in I$ and $n_{i}=$ $=n_{i}=0$, then $\left\langle f_{i}, f_{i}\right\rangle$ belongs to every atom of \mathscr{L}_{Δ}. Thus, the atoms in \mathscr{L}_{Δ} are in a one-to-one correspondence with some primitive classes of algebras with one nullary and unary operations; we get $A T(\Delta) \leqslant 2^{x_{0}} \quad$ if μ is finite and $A T(\Delta) \leqslant$ $\leq 2^{m}$, if w is infinite. The converse inequali-
ties follow from Lemmas 1 and 3.
Let there exist an $i_{0} \in I$ such that $m_{i_{0}} \geq 2$. If I is finite, then the assertion follows from Kalicki [4] ; see also Grätzer [1], Theorem 2 in § 27. Let I be infinite. It is sufficient to prove AT($\boldsymbol{A}) \geq$ $\geq 2^{\text {card } I}$. At least one of the two sets $\left\{i \in I ; n_{i} \geq 1\right\}$ and $\left\{i \in I ; m_{i}=0\right\}$ has the same cardinality as I. If Card $\left\{i \in I ; m_{i} \geq I\right\}=$ Card I, the assertion follows easily from Lemma 3. Let Card $\left\{i \in I ; n_{i}=0\right\}=\operatorname{Card} I$. Let x and ψ be two different elements of X. For every subset M of $\left\{i \in I ; n_{i}=0\right\}$ define a Δ-theory E_{M} : it contains all equations $\left\langle x, f_{i_{0}}\left\langle x, f_{j}, \ldots, f_{j}\right)\right\rangle$ where $j \in M$ and all equations $\left\langle f_{i_{0}}\left(x, f_{j}, \ldots, f_{j}\right)\right.$, $\left.f_{i}\left(i, f_{j}, \ldots, f_{j}\right)\right\rangle$ where $j \in\left\{i \in I_{;} m_{i}=0\right\}-M$. The proof can be finished as in Lemma 3.

82. Supremum of the set of atome in \mathscr{L}_{Δ} : the case $n_{i} \leq 1$ for all $i \in I$.

Let $\Delta=\left(n_{i}\right)_{i<I}$ be a type such that $m_{i} \leqslant 1$ for all $i \in I$. We shall describe the supremum \mathcal{S} of the set of all atoms in \mathscr{L}_{Δ}.

Firstly, let $n_{i}=0$ for all $i \in 1$. As there is exactly one atom in $\boldsymbol{L}_{\Delta}, \boldsymbol{y}$ is just the atom, i.e., the set of all Δ-equations that are either constant or trivial.

Secondly, let $\left\{i \in I ; m_{j}=1\right\}$ have exactly one
element $i_{0} . \mathscr{L}_{4}$ has exactly two atoms；they are des－ cribed in Lemma 4．It is easy to see that the supre－ mum \mathscr{f} of these two atoms is just $C_{n}\left(C \cup\left\{<f_{f_{0}}(x)\right.\right.$ ， $\left.\left.f_{i_{0}}\left(f_{i_{0}}(x)\right)>\right\}\right) \quad$ where x and C are as in Lem－ ma 4.

It remains to consider the case Cand $\{i \in I$ ； $n_{i}=13 \geq 2$ ．

Lemma 5．Let $n_{i} \leq 1$ for all $i \in I$ and Cand $\left\{i \in I ; m_{i}=1\right\} \geq 2$ ．Let $x \in X$ ；let s and $\bar{万}$ be two different unary sequences（of $\boldsymbol{\Delta}$ ）．Then there ex－ ists a consistent Δ－theory E such that $E \cup\left\{<x^{\wedge}\right.$ ， $x^{\bar{\pi}}>\boldsymbol{\}}$ is inconsistent．

Proof．Let us fix two different unary symbols l and + （of type Δ ）．We may suppose that if either $\bar{万}=力 t$ or $b=\bar{万} t$ for some unary sequence t ， then the first symbol in t is not 1 ．（If this were not true，we could exchange the role of 1 and + ．） Denote by t_{1} the longest common beginning of s and \bar{s} ；we may write $\bar{s}=t_{1} t_{2}$ for some unary sequen－ ce t_{2} ．Denote by c the length of s ，by d_{1} the length of t_{1} and by d_{2} the length of t_{2} ．

If π and \bar{n} are two rational numbers，then $[\pi, \bar{r}]$ denotes the set of all rational numbers q such that $n<q<\bar{r}$ ．Put $A=[0,1]$ ．It is evidently possible to choose subsets A_{0}, \ldots, A_{c} of A so that the following be true：A_{0} is an infini－ te subset of $\left[\frac{1}{2}, 1\right]$ and 2 ts complement in
[$\left.\frac{1}{2}, 1\right]$ is infinite, too; if $0<k \leq c$ and if the $k-$ th symbol in s is + , then $A_{k}=\left\{\frac{1}{2} n ; n \in\right.$ $\in A_{k-1} 3$; if $0<k \leq c$ and if the k-th symbol in s is different from + , then A_{k} is an infinite subset of $\left[\frac{1}{2}, 1\right]-\left(A_{0} \cup \ldots \cup A_{m-1}\right)$ and its complement in $\left[\frac{1}{2}, 1\right]-\left(A_{0} \cup \ldots \cup A_{k-1}\right)$ is infinite, too. It is evidently possible to choose sets \bar{A}_{0}, \ldots $\ldots, \bar{A}_{d_{2}} \quad$ so that the following be true: $\bar{A}_{0}=A_{d_{1}}$; if $0<k \leq d_{2}$. and if the $k-$ th symbol in t_{2} is + , then $\bar{A}_{k}=\left\{\frac{1}{2} \pi ; \kappa \in \bar{A}_{k-1}\right\}$; if $0<k \leqslant d_{2}$ and if the k-th symbol in t_{2} is different from + , then \bar{A}_{k} is an infinite subset of $\left[\frac{1}{2}, 1\right]-\left(A_{0} \cup \ldots\right.$ $\left.\ldots \cup A_{c} \cup \bar{A}_{o} \cup \ldots \cup \bar{A}_{n-1}\right)$ and its complement in $\left[\frac{1}{2}, 1\right]-$ $-\left(A_{0} \cup \ldots \cup A_{c} \cup \bar{A}_{0} \cup \ldots \cup \bar{A}_{k-1}\right)$ is infinite, too.

Let us fix an integer $n \geq 1$ such that neither s nor \bar{j} contains $\underset{+}{\ldots}$ (the unary sequence, consesting of n symbols +) as a connected subsequence. The sets $\left[0, \frac{1}{2^{n}}\right], A_{0}, \ldots, A_{c}, \bar{A}_{1}, \ldots, \bar{A}_{\alpha_{2}}$ are avidently pairwise disjoint.

We shall make A algebra of type Δ. For all $a \in A$ put $a^{+}=\frac{1}{2} a$; for all $a \in\left[0, \frac{1}{2^{n}}\right]$ put $a^{\prime}=\rho(a)$ where ρ is a fixed one-to-one mapping of $\left[0, \frac{1}{2^{m}}\right]$ onto A_{0}; if $0<k \leq c$ and if the \& th symbol in s is $i \neq+$, then for all
$a \in A_{k-1} \operatorname{put}_{f_{i}}{ }^{(A)}(a)=\varphi_{k}(a)$ where φ_{k} is a fixed one-to-one mapping of A_{k-1} onto A_{k}; if $0<$ $<k \leqslant d_{2}$ and if se-th symbol in t_{2} is $i \neq+$, then for all $a \in \bar{A}_{k-1}$ put $f_{i}^{(A)}(a)=\psi_{f=}(a)$ where ψ_{m} is a fixed one-to-one mapping of \bar{A}_{s-1} onto $\boldsymbol{A}_{\mathrm{f}}$. The definition of the algebra A is not yet completed, but realize this: $a \neq 1 n$ is already defined for all $a \in A$ and $a \rightarrow a^{+1 n}$ is a one-to-one mapping of A onto A_{c}; similarly, $a^{2 / 15}$ is already defined for all $a \in A$ and $a \rightarrow a^{+1}$ is is a one-to-one mapping of A onto $\bar{A}_{\alpha_{2}}$; by the assumption stated at the beginning of this proof, b' is not yet defined for any br $\in A_{c}$ and for any $b \in \bar{A}_{\alpha_{2}}$. Let us fix an element $\propto c$ c \mathcal{A}. We can complete the definition of the algebra A in this way: if $f \in A_{c}$, then b^{\prime} is the uniquely determined $a \in A$ such that $a^{\circ+1 \%}=b$; if $b \in \overline{\mathbb{A}}_{\alpha_{2}}$, then $b^{\prime}=\alpha$; in all other cases the operations are defined arbitrarily.

In this algebra A, the equations $\left\langle x, x^{7+1+1\rangle}\right.$ and $\left\langle x^{\mp / \pi 1}, y^{\mp|\pi|\rangle}(y \in X\right.$ being different from x) are valid and thus the theory $E=$ $=\left\{\left\langle x, x^{F \mid 101}\right\rangle,\left\langle x^{*|\pi|}, y^{F|\pi|\rangle\}}\right.\right.$ is consistent; $E \cup\left\{\left\langle x^{*}, x^{\pi}\right\rangle\right\}$ is evidently inconsistent.

Theoren 2. Let $\Delta=\left(m_{i}\right)_{i \in I}$ where $m_{i} \leq 1$ for all $i \in I$ and Card $\left\{i \in I ; m_{i}=1\right\} \geq 2$. The supreane of the set of all atoms in \mathscr{L}_{Δ} is just the
set of all Δ-equations that are either constant or trivial.

Proof. Denote the supremum by $\boldsymbol{\mathcal { S }}$ and the set of all Δ-equations that are either constant or frivial by \mathcal{C}. By Lemme 2, we have $\mathcal{C} \subseteq \mathcal{Y}$. Let $\left\langle w_{1}, w_{2}\right\rangle \notin C$. Then $w_{1} \neq w_{2}$ and either w_{1} or w_{2} is not a constant Δ-term, so that it is equal to x^{s} for some $x \in X$ and some unary sequence B. There exists evidently a unary sequence $\bar{万} \neq s$ such that $\left\langle w_{1}, w_{2}\right\rangle \vdash\left\langle x^{*}, x^{\bar{T}}\right\rangle$. By Lemma 5 there exiata a consistent theory and hence an atom E in \mathscr{L}_{Δ} such that $E \cup\left\{\left\langle x^{b}, x^{\overline{5}}\right\rangle\right\}$ is inconsistent. As $\left\langle x^{\boldsymbol{*}}, x^{\boldsymbol{T}}\right\rangle \notin E$, we have $\left\langle x^{n}, x^{\boldsymbol{J}}\right\rangle \notin y$ and consequently, $\left\langle w_{1}, w_{2}\right\rangle \notin \mathscr{Y}$. We get $\mathscr{Y}=$ - C.

8 3. Supremum of the set of atoms in \mathscr{L}_{4} : the case $m_{i_{0}} \geq 2$ for some $i_{0} \in 1$

Let $\Delta=\left(m_{i}\right)_{i \in I}$ be a type such that there exists an $i_{0} \in I$ satisfying $m_{i_{0}} \geq 2$; let us fix such an i_{0}.

For all we $\in W_{\Delta}$ and $m=1,2,3, \ldots$ deline w^{1} in this way: $w^{1}=w^{2} ; w^{x+1}=f_{0}\left(w^{2}, \ldots, w^{\text {复 })}\right.$.

Lemme 6. Let w_{1} and w_{2} be two different olements of W_{Δ} and x, y two different elements of $X \cap\left(S\left(w_{1}\right) \cup S\left(w_{2}\right)\right)$. Then there exist two diffferment elements $\bar{w}_{1}, \bar{w}_{2} \in W_{A}$ such that
$\left\langle w_{1}, w_{2}\right\rangle \vdash\left\langle\bar{w}_{1}, \bar{w}_{2}\right\rangle$ and $x \cap\left(S\left(\overline{w_{1}}\right) \cup S\left(\bar{w}_{2}\right)\right) \subseteq$ $E(x-\{y\}) \cap\left(S\left(w_{1}\right) \cup S\left(w_{2}\right)\right)$.

Proof. For each $n=1,2,3, \ldots$ let η_{n} be the endomorphiam of W_{4} defined by $\eta_{n}(y)=x^{n}$ and $\eta_{m}(x)=x$ for all $x \in X-\{y\}$. Evidently, we have $\left\langle w_{1}, w_{2}\right\rangle \vdash\left\langle\eta_{n}\left(w_{1}\right), \eta_{n}\left(w_{2}\right)\right\rangle$ and $X \cap\left(S\left(\eta_{n}\left(w_{1}\right)\right) \cup S\left(\eta_{m}\left(w_{2}\right)\right) \subseteq\left(X-\left\{y^{j}\right\}\right) \cap\left(S\left(w_{1}\right) \cup S\left(w_{n}\right)\right)\right.$. There exists an integer $n \geq 1$ such that $x^{18} \$ S\left(w_{1}\right)$ and $x^{2} \notin S\left(w_{2}\right)$. It is sufficient to prove the following assertion for all $t_{1}, t_{2} \in W_{\Delta}$: whenever $m \geq 1$ is an integer such that $x^{2} \notin S\left(t_{1}\right)$, $x^{*} \notin S\left(t_{2}\right)$ and $\eta_{n}\left(t_{1}\right)=\eta_{n}\left(t_{2}\right)$, then $t_{1}=t_{2}$. We shall prove by the induction on t_{1} that the assertion holds for this t_{1} and for all $t_{2} \in W_{A}$.

Let $t_{1} \in X$. If $t_{1} \in X-\{y\}$, then $\eta_{n}\left(t_{1}\right)=t_{1}$, $s 0$ that (if $\left.\eta_{n}\left(t_{1}\right)=\eta_{n}\left(t_{2}\right)\right) \eta_{n}\left(t_{2}\right) \in X$, so that evidently, $\eta_{n}\left(t_{2}\right)=t_{2}$ and consequently, $t_{1}=t_{2}$. If $t_{1}=y$, then $\eta_{m}\left(t_{1}\right)=x^{m}$, so that (if $\eta_{m}\left(t_{1}\right)=$ $=\eta_{n}\left(t_{2}\right) \eta_{n}\left(t_{2}\right)=x^{n}$ and thus either $t_{2}=x^{n}$ or $t_{2}=y ;$ in the first case we would get a contradiction with $x^{2} \& S\left(t_{2}\right)$, so that $t_{2}=y=t_{1}$.

Let $t_{1}=f_{i}\left(t_{1}^{(n)}, \ldots, t_{1}^{\left(n_{i}\right)}\right)$ and let the assertion hold for $t_{1}^{(1)}, \ldots, t_{1}^{\left(n_{i}\right)}$. If $t_{2} \in X$, then the proof is similar to the proof in the case $t_{1} \in X$.

Let $t_{2} \neq X$, so that $t_{2}=f_{j}\left(t_{2}^{(1)}, \ldots, t_{2}^{(n)}\right)$ for some $f \in I$ and $t_{2}^{(1)}, \ldots, t_{2}^{(n j)} \leqslant W_{\Delta}$. If $\eta_{n}\left(t_{1}\right)=$ $=\eta_{n}\left(t_{2}\right)$, then
$f_{i}\left(\eta_{n}\left(t_{1}^{(1)}\right), \ldots, \eta_{n}\left(t_{1}^{\left(n_{i}\right)}\right)\right)=\eta_{n}\left(f_{i}\left(t_{1}^{(1)}, \ldots, t_{1}^{\left(n_{i}\right)}\right)\right)=\eta_{n}\left(t_{1}\right)=$ $=\eta_{n}\left(t_{2}\right)=f_{j}\left(\eta_{n}\left(t_{2}^{(1)}\right), \ldots, \eta_{n}\left(t_{2}^{\left(n_{1}\right)}\right)\right)$,
so that $i=j$ and $\eta_{n}\left(t_{1}^{(1)}\right)=\eta_{n}\left(t_{2}^{(1)}\right), \ldots, \eta_{n}\left(t_{1}^{(1)}\right)=\eta_{n}\left(t^{(n)}\right)$.
By the induction assumption (as $x^{2} \psi S\left(t_{1}\right) \cup S\left(t_{2}\right)$ evidently implies $\left.x^{2} \notin S\left(t_{1}^{(1)}\right) \cup S\left(t_{2}^{(2)}\right), \ldots\right)$, we get $t_{1}^{(n)}=t_{2}^{(n)}, \ldots, t_{1}^{\left(n_{i}\right)}=t_{2}^{\left(n_{8}\right)}$, so that $t_{1}=t_{2}$.

Lemma 7. Let w_{1} and w_{2} be two different lements of W_{Δ}. Then there exist two different elements $\bar{w}_{1}, \bar{w}_{2} \in W_{A}$ and an $x \in X$ such that $\left\langle w_{1}, w_{2}\right\rangle \vdash\left\langle\overline{w_{1}}, \overline{w_{2}}\right\rangle$ and $X \cap S\left(\overline{w_{1}}\right)=X \cap S\left(\overline{w_{2}}\right)=\{x\}$.

Proof. As every $S(w)$ is a finite set, the firnite number of applications of Lemma 6 gives the exisfence of different elements $v_{1}, v_{2} \in W_{A}$ satisfying $\left\langle w_{1}, w_{2}\right\rangle F\left\langle v_{1}, v_{2}\right\rangle$ and card $\left(X \cap\left(S\left(v_{1}\right) v\right.\right.$ $\left.\cup S\left(v_{2}\right)\right) \leq 1$. If $X \cap\left(S\left(v_{1}\right) \cup S\left(v_{2}\right)\right)$ is nonempty, let x be its (only) element; if it is empty, let x be an arbitrary element of X. It is sufficient to put $\bar{w}_{1}=f_{i}\left(v_{1} x, \ldots, x\right)$ and $\bar{w}_{2}=f_{i}\left(v_{2}, x, \ldots, x\right)$.

Lemma 8. Let nontrivial Δ-equation $\left\langle w_{1}, w_{2}\right\rangle$ and an element $x \in X$ be given; let $X \cap S\left(w_{1}\right)=$
$=X \cap S\left(w_{2}\right)=\{x\}$. Then there exists a consistent
Δ-theory E such that $E \cup\left\{\left\langle w_{1}, w_{2}\right\rangle\right\}$ is inconsistent.

Proof. Put $B=S\left(w_{1}\right) \cup S\left(w_{2}\right)$. Let D be the set of all μ^{n} where $\mu \in B$ and $n=1,2,3, \ldots$. Let K be the set of all constant Δ-terms belowsing to D; put $V=D-K$. Let R be the set of all rational numbers. Put $A=(V \times R) \cup K$. We shall suppose that no element of K is an ordered pair; in the contrary case we would use (instead of W_{Δ}) some algebra isomorphic to W_{Δ}. If a is an ordered pair, denote by \hat{a} its first and by \vec{a} its second member. If a is not an ordered pair, we put $\bar{\alpha}=a$ and we do not define \vec{a}. Let us fix a one-to-one mapping η of A onto R. Let us fix an integer $c \geq 1$ such that $\mu^{\&} \notin B$ for all $\mu \in W_{A}$; the existence of such a c is evident, and $c+1$ has the same propertly. Let us fix an element oc $\in \mathcal{A}$.

We shall make A algebra of type Δ. Let $i \in$ $\in I, n_{i}=0$. If $f_{i} \in \mathcal{K}$, put $f_{i}^{(A)}=f_{i} ;$ if $f_{i} \notin K$, define $f_{i}^{(A)} \in A \quad$ arbitrarily. Let $i \in I, n_{i} \neq 0$, and $a_{1}, \ldots, a_{m_{1}} \in A$. Evidently, at most one of the following six cases can take place:
(i) $f_{i}\left(\hbar_{1}, \ldots, \overleftarrow{a}_{m_{i}}\right) \in D$; there exists a j $\left(1 \leqslant j \leq n_{i}\right)$ such that $a_{j} \in V \times R$; there exiata an $r \in R$ such that whenever $1 \leqslant j \leqslant n_{i}$ and $a_{j} \in V \times R$, then $\overrightarrow{a_{j}}=k$:
(ii) $f_{i}\left(\overleftarrow{a}_{1}, \ldots, \overleftarrow{a}_{m_{i}}\right) \in D$ and $a_{1}, \ldots, a_{m_{i}} \in K$;
(iii) $i=i_{0}$; there exists a $v \in V$ and an $K \in$
$\in R$ such that $a_{1}=\langle v, i n\rangle$ and $a_{2}=\ldots-a_{n_{i}}=$
$=\left\langle v^{£}, \kappa\right\rangle$;
(iv) $i=i_{0} ; a_{1} \in K ; a_{2}=\ldots=a_{n_{i}}=a_{1}^{\varrho}$;
(v) $\quad i=i_{0}$; there exists an $k \in R$ such that $a_{1}=$
$=\left\langle w_{1}, n\right\rangle \quad$ and $a_{2}=\ldots=a_{n_{i}}=\left\langle w_{1}^{c+i}, \kappa\right\rangle$;
(vi) $i=i_{0}$; there exists an $K \in R$ such that
$a_{1}=\left\langle w_{2}, r\right\rangle \quad$ and $a_{2}=\ldots=a_{n_{i}}=\left\langle w_{2}^{e+1}, r\right\rangle$. In these cases we define $f_{i}^{(1)}\left(a_{1}, \ldots, a_{n_{i}}\right)$, successively, in this way:
(i) $=\left\langle f_{i}\left(\overleftarrow{a}_{1}, \ldots,{\overleftarrow{a_{n i}}}\right), \kappa\right\rangle$;
(ii) $=f_{i}\left(a_{1}, \ldots, a_{n_{i}}\right)$;
(iii) $=\left\langle x, \eta\left(a_{1}\right)\right\rangle$;
(iv) $=\left\langle x, \eta\left(a_{1}\right)\right\rangle$;
(v) $=\eta^{-1}(x)$;
(vi) $=\boldsymbol{\alpha}$.

In all other cases we define $f_{i}^{(A)}\left(a_{1}, \ldots, a_{m_{i}}\right)$ arbitrarily.

Let us define an endomorphism 2 of W_{4} by $\nu(x)=f_{i}\left(x, x^{2}, \ldots, x^{e}\right)$ and $\nu(x)=x$ for all $2 \in X-\{x\}$.

Let \mathscr{P} be an arbitrary homomorphian of W_{d} into A. Put $a=\varphi(x)$. Evidently, $\varphi(\nu(x))=\langle x, \eta(a)\rangle$. For all $u \in K$ we have $\Phi(\nu(\mu))=\mu$; by induction on v it is easy to prove for all $v \in D$ that if $X \cap S(v)=\{x\}$, then $\varphi(v(v))=\langle v, \eta(a)\rangle$. We get
$\varphi\left(f_{i}\left(\nu\left(w_{1}\right), \nu\left(w_{1}^{2+1}\right), \ldots, \nu\left(w_{1}^{\& \pm 1}\right)\right)\right)=$ $=f_{i_{0}^{(A)}}^{(A)}\left(\left\langle w_{1}, \eta(a)\right\rangle,\left\langle w_{1}^{e+1}, \eta(a)\right\rangle, \ldots,\left\langle w_{1}^{e+1}, \eta(a)\right\rangle\right)=$
$=\eta^{-1}(\eta(a))=a=\rho(x)$
and similarly,

$$
\varphi\left(f_{i_{0}}\left(\nu\left(w_{2}\right), \nu\left(w_{2}^{c+1}\right), \ldots, \nu\left(w_{2}^{\varepsilon+1}\right)\right)\right)=\propto .
$$

As this holds for all homomorphisms $\boldsymbol{\varphi}, \mathrm{A}$ is a model of the theory E composed of $\left\langle x, f_{i_{0}}\left(\nu\left(w_{1}\right), \nu\left(w_{1}^{c+1}\right), \ldots\right.\right.$ $\left.\left.\cdots, \nu\left(w_{1}^{++1}\right)\right)\right\rangle \quad$ and $\left\langle f_{i}\left(\nu\left(w_{2}\right), \nu\left(w_{2}^{\epsilon+1}\right), \ldots\right.\right.$ $\left.\left.\ldots, \nu\left(w_{2}^{\& \pm 1}\right)\right), f_{i_{0}}\left(\nu\left(\bar{w}_{2}\right), \nu\left(\bar{w}_{2}^{\star+1}\right), \ldots, \nu\left(\bar{w}_{2}^{\&+1}\right)\right)\right\rangle$
where \vec{w}_{2} arises from w_{2} by exchanging x. with some element of $X-\{x\}$. Thus, E is consistent, and $E \cup$ $u\left\{\left\langle w_{1}, w_{2}\right\rangle\right\}$ is evidently inconsiatent.

Theoren 3. Let $\Delta=\left(n_{i}\right)_{i \in I}$ where $n_{i_{0}} \geq 2$ for some $i_{0} \in I$. The supremum of the set of all atoms in \mathscr{L}_{Δ} is just ${ }^{1} \mathscr{x}_{A}$, the greatest element of \mathcal{L}_{4}.

Proof. Let \boldsymbol{f} be the supremum. Suppose $\boldsymbol{f} \neq 1_{\alpha_{a}}$, so that some non-trivial equation belongs to \boldsymbol{Y}. By Lemma $7, \mathcal{f}$ containe a non-trivial equation $\left\langle w_{1}, w_{2}\right\rangle$ satiafying the assumptione of Lemaa 8 ; by Lemaa 8 there
exists a consistent $E \in \mathscr{L}_{A} \quad$ such that $E \cup\left\{<w_{1}\right.$, $w_{2}>3$ is inconsistent. As E is consistent, there exists an atom A in \mathscr{L}_{Δ} such that $E \subseteq A$. We have $E \cup\left\{\left\langle w_{1}, w_{2}\right\rangle\right\} \equiv A \cup \mathscr{S}=A$, so that A is inconsistent - a contradiction.

Let us give a re-formulation of Theorem 3. A class el of algebras of type $\boldsymbol{\Delta}$ is called non-trivial if it contains at least two-element algebras; it is called non-extreme if it is non-trivial and does not contain all algebras of type $\boldsymbol{\Delta}$.

Theorem 4. Let $\Delta=\left(n_{i}\right)_{i \in I}$ where $n_{i_{0}} \geq 2$ for some $i_{0} \in I$. For every non-extreme primitive class er of algebras of type Δ there exists a non-extreme primitive class \mathcal{L} of algebras of type Δ such that el $\cap \mathscr{Z}$ is trivial.

References
[1] G. GRKTZER: Universal algebra. D.Van Noatrand,Princeton
[2] J. JEZEK: Primitive classes of algebras with unary and nullary operations. Colloquium Math. 20/2(1969),159-179.
[3] J. JEZEX: Principal dual ideals in lattices of primitive classes: Comment.Math.Univ.Carolinae 9(2968),533-545.
$[4]$ J. KALICKI: The number of equationally complete classes of equations. Indagationes Math. 17(1955),660-662.

Matematicko-fyzikalni fakulta

Karlova Universita
Praha 8 Karlín
Sokolovská 83, Czechoslovakia
(Oblatum 12.12.1969)

- 532 -

