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Commentationes Mathematicae Universitatis Carolinae 

11, 3 (1970) 

ON ATOMS IN LATTICES, OF PRIMITIVE GLASSES 

Jaroslav JE&EK, Praha 

This paper is a continuation of my papers 12} and 

[31 on lattices &A (of all primitive classes of algeb

ras of type A ). For the terminology see C33 . We shall 

be concerned with atoms in £„ . It is well-known (see 

HI) that every £. is atomic. 

In § 1, Theorem 1, a complete answer to the follo

wing question (Gratzer'a problem 33 in £13 is given: find 

the number of atoms in i£ f for all types A . 

For any complete atomic lattice L we can define, 

in a natural way, an element of L : the supremum of the 

set of all atoms of L . If L *» «C4 , then every element 

of L determines a primitive class of algebras of type 

A and we may ask to describe the primitive class de

termined by the supremum of atoms* The description de

pends on whether A contains or does not contain at 

least binary operations* The description is found in 

Theorems 2 and 3* 

For the terminology and notation see § 1 of 133* 

As in 133, we fix an infinitely countable set X 

and for each type A an absolutely free algebra Ws 

of type A . I-? A is an algebra of type A m (m^^i€ % 
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and i € 1 , then the i -th fundamental operation of 

A is denoted by $J** ; the i -th fundamental o-

peration of W4 ia denoted by f^ . If m^ « 0 f then 

£,* ia an element of Wj. . 

11 omenta of W* are called A -terms. A J -

term «ur is called constant if X o S (w) is empty 

(the set S ( v ) is the set of all aubwords of mr , 

defined in {3)). A d -term is evidently constant, if 

and only if it belongs to the subalgebra of W^ ge

nerated by the empty set. 

A d -equation < <ur^ 9 <vr% > is called constant 

if w and w% are constant A -terms. 

Let a type 4 • ^ V ^ e i be given. Elements i * 

e I such that m,± m *f are called unary symbols (of 

A ). A finite (not necessarily non-empty) sequence 

of unary symbols is called unary sequence. If A is 

an algebra of type A , & e A and A> » 4,,«»», A * 

is a unary sequence, then a* is defined in this way: 

a*« a if ^ is empty; c?*$»,*"'m i™ Co,*4*"'**-' ) . 

If ̂  •» /bi9.0.fAfo and t <• tl,,..., t^ are two unary 

sequences, then A>t is the unary sequence M4^ •'•>>^^ 

If 4 is a type, then itd is the dual of the 

lattice of all Fl-congruence relations of WA . Let us 

smalleat by 0g 

denote the greatest element of it. by *t, and the 

»at by Oj. . 

A J -theory £ is called consistent if 
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Cm, (1L ) 4s Og ; iittif E ha8 a non-trivial model; 

"inconaistent" means "not consistent"• 

§ 1. The number of atoma in latticea XA 

Given a type A , denote by AT (A) the car

dinality of the aet of all atome in itA -

Lemma 1. Let A » (^ X t where I m ii,, 4>x I , 

i 4c im and m,. « /*. « 4 . Then A T C 4 ) * 2** . 
1 2 *t ^ 

F70of> It ia aufficient to prove A T (A) £ 2** . 

Denote î  by J and î  by f . If A ia an algeb

ra of type A and a m A then a' « if** (a) and 
*f 

of » f 5*} Co,) . Let x and <y~< be two different ele
git w 

menta of X . Denote by M the aet of all infinite ae-

quence8 € •» <«^ , # 4 , #f,... > of number a 0 and 

A p ao that M haa 2H° el omenta* For each e e M 

define a A -theory E # : it containa all equations 

<.x"l4?l , nf{+* > where m, ia auch that -e^ • 0 

and all equationa ( «x , cX*' B > where m, ia auch 

that e^ * A . (Here + denoted the aequence contai

ning m, symbols -•- • ) If <e and -g& are two diffe

rent elementa of M , then I»e u E e ia evidently 

inconsistent; as i&A ia an atomic lattice, it ia auf

ficient to prove that every £ # ia conaiatent* Let 

e e M . 

Denote by A the aet of all ordered pairs 

< *l , * > where *> 2: A ia a rational number and Z 
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is either 0 or A . Let us fix a one-to-one mapping cf 

of the set of all rational numbers H, -£ 4 onto the 

set of all rational numbers $, such that 4 & £, < 2 • 

Define an algebra AM with the underlying set A in 

this way: 

(i) <0fH,>* m <4,<j>C*,)> , 

(ii) <4f*>+ ** <4,H, +4 > . 

(iii) <4, /t>f - <0 , * > • 

( iv) If m, & n, < <n> + 4 and € ^ » 0 , then < 0 , /e- > ' •» 
ac < 0 , m, > j 

(v) Let m, 6* H, < i* + 4 and -e^ » 4 . If g?~4 (*,- m,+ 

- * 4 ) « : 2 , put <0,H,>sm <0,<p~4 (y4 (* -n + 1 ))> . 

If <j>m4(H,~m, + 4) & 2 , put <0,H,>1 m <4f(p-4(K,-m. + 4)~4> . 

We shall prove that A^ i s a model of E- . Let an 

integer m, ^ 4 be given. 

Let e » 0. Let d f i A , There ex is ts an vt* < .2 

such that a+J+ -» < 4, /*> > * We have a*'*1** * < 4 , H, + 

+ m, - 4 > where ^ *» >fc + *n>--4 </n,+ 4 , so that 

^ l ? « - < o f ^ > . Hence, < x ^ * 1 , ^ « ? « > i a v a_ 

l i d in At . 

Let € ^ 9 4 . Let Ô  € A . If a, m <0, * > f then 

a4"1^1 s < 0 , 9 CyC*)) • a t - 4 > j as <n, A <p €<$(*,)) +m,~ 

~4< m, + 4 *xi&<f*(f(<f(*V + ^~4~m.+4)m<p(H,)<2f 

we gfittf*U<0,^<9*(9tyU}}+i*m* + 4*> m «>,*>> ~*-

If Q,m <4f*c>f than o?{t{ m <0,<?<H> + 4)+m,„4)}M 
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vu&0(/c + 1)+#i>-4<m,+4 an&tf1(f(fc+4)+'n>-4'~m'+4)*it>+4&2, 

we gatctl^i»<Aff
1(^(^+4)+^-1-^+A)-4>»<Af/^>»a . 

Hence, ( x $ x+l+ n > is valid in .A€ • 

Leaaaa 2. Let A m(m,J^Ml where <n,± m 4 for all 

i 6 I . If cc is a constant A -equation and A 

an atom in XA . then cc € A . 

Proof. Let C be the set of all <ur € W^ such 

that <«r, 4<r*> € A for some constant J -term %r . It is 

easy to prove that A u f C x C ) is a Fl-congruence 

relation of V. and A u (CM C ) 4* 0^ . As A is an 

atom, we set A **A u (C x C) , i.e. C x C £ A . Each 

constant A -equation belongs to C x C , 

Lemma 3. Let A ** (n%4 )i € j where m>l ^ A for all 

* € I . If I is infinite, then ATCA) * 2*1**1 . 

Proof. It is sufficient to prove AT (A ) * ±Cmuil . 

Let x and /y, be two different elements of X . For each 

subset M of I define a A -theory £ w in this 

way: it contains all equations (xf fy (xf ...9 x ) > whe

re ie M and all equations <f4i(xf...fx)ff4f(ty>9...fy,)> 

where i € I - M • Evidently, each E M is consistent, 

so that there exists an atom A M in ̂  such that 

A M I- E w . If Mi and M ^ *** two different subsets 

of I , then E M u E M is evidently inconsistent, so 

th.t A M + A J . Th.r. .r. I * * " 1 di«.r.nt .ub-

sets of I . 

- 519 



Lemma 4. Let 4 ** ^^)i%t > let there exist 

an i € I euch that m^ -» 4 and /n,̂  » 0 for all 

<i c I - {% J . Then A T ( 4 ) - 2 . If C is the set 

of all constant A -equations and x, n^ two diffe

rent elements of X f then the two atoms of it^ are 

just C„ (C ui<x,1^(x)>}) and Cm(C ui<^U), 

\(ty)>J) • 

Proof is easy; for the complete description of 

X* in this case see 12]. 

Theorem 1. Let a type A m (f%)^mX be given, 

(i) Let ffi^ & 4 for all i € I • put AH. m Ca*cLii €i; 

m^m 4 i . If AH*** 0 , then ATCzl)-»'f. If / W - ' f , 

then AT(6)M2 . If 2 * A * < H, , then A T C4) * 2** . 

If AH- is infinite, then AT(<d) * 2 ^ . 

(ii) Let there exist an i0 < I such that m,± £ 2 . 

It I is finite, then A T( 4 ) m 2** . If I is infi

nite, then A T ( 4 ) * 2****1 . 

Proof. Let ftii 4* 4 tor all i m I. It AIL ** .0 9 

the assertion is easy, and if >**. -» ̂  , it follows from 

Lemma 4. Let AH, & 2 . By Lemma 2, it i9£ e I and 42.» 

iv rti£ a. 0 f then <f^ 9 fy > belongs to every atom of 

St , Thus, the atoms in it* are in a one-to-one 

correspondence with some primitive classes of algebras 

with one nullary and AH> unary operations; we get 

A T CA) * 1** it AH, is finite and A T Cd ) * 

& 2"* 9 it AH. is infinite. The converse inequali-
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ties follow from Lemmas 1 and 3* 

Let there exist an ia € I such that m,» -fe £. 

If I is finite, then the assertion follows from Kalic-

ki C4J ; see also Gratzer fl], Theorem 2 in § 27. Let 1 

be infinite. It is sufficient to prove AT (A ) £ 

£2 , At least one of the two sets {*£*!• /n-*s^4f 

and {* c I j /ft- -» 0jf has the same cardinality as I . 

If &vu£ {i € l^m^^t llmCoKdl ,the assertion follows 

easily from Lemma 3* Let Ca*d{i e lym>i m 0} m Caidi I • 

Let x and /y, be two different elements of X , For eve

ry subset M of {i £ I • m$ m OJ define a A -theory 

JE,̂  .• it contains all equations <x , f. 6v, ft ,.... f* ) > 

where -j. e M and all equations <*^ Cx, *(£,..., T^ > , 

£# (&9 U>'"> U** w h e r e £ * {i*I}<ng»'0j~M .The 

proof can be finished as in Lemma 3. 

§ 2. Supremun. of the set of atoms in ^ ; ih£ 

case /«.,* -6 4 for fllj, * c I . 

Let J "-fri^itr b® a type such that *$ sr 4 

for all i e I . We shall describe the supremum Sf of 

the set of all atoms in J^ . 

Firstly, let <n$ m 0 for all i e 1 . As there is 

exactly one atom in ̂  , i^ is just the atom, i.e., 

the set of all A -equations that are either constant 

or trivial. 

Secondly, let {i € If #% •> 41 have exactly one 
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element i0 • o£A has exactly two atoms; they are des

cribed in Lemma 4* It is easy to see that the supre-

mum if of these two atoms is just C^ (C u {<"& (*) 9 

h Cfj (*))>}) where x and C are as in Lem-

ma 4. 

It remains to consider the case Ccutci il m I ; 

«u4 m 1} > 2 . 

Lemma 5. Let m.^ & 1 for all i e I and 

G**d, iim l*9m^m4} it 2 . Let x e X; let & and ST be 

two different unary sequences (of A )• Then there ex

ists a consistent A -theory £ such that £ w i<*?, 

*x* > 1 is inconsistent. 

Proof. Let us fix two different unary symbols J 

and + (of type A )• We may suppose that if either 

A & A>t or A> ** £ t for some unary sequence t , 

then the first symbol in t is not I • (If this were 

not truei we could exchange the role of I and 4~ •) 

Denote by t the longest common beginning of A> and 

^ we may write % •• t̂  t* for some unary sequen

ce t . Denote by e the length of A f by dL^ the 

length of t. and by cL the length of t̂  . 

If /t and 7 are two rational numbers, than 

C H, f 3* J denotes the set of all rational numbers & 

such that * < 4 < £ . Put A « £0, 4J . It is 

evidently possible to choose subsets Am , "*9 A a of 

A so that the following be true: Am ia an infini

te subset of Cj ,47 and its complement in 
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£ I" , 4 1 is infinite, too; if 0 < A & C and if 

the A -th symbol in /* is 4- , then A ^ •* «£ j it > At- € 

a A^., I j if 0 < A & c and if the A -th symbol 

in ^ is different from 4- , then Aj^ is an infini

te subset of i j , 4 1 - (A0 u... u Alt-* ) and ita 

complement in ti941-'(A0u...u Aj^m< ) is infini

te, too. It is evidently possible to choose sets Aof»* 

• "fAgi so that the following be true:^-* A^ j 

if 0 < A m. d% and if the A -th symbol in t± is 

4> f then X^m {| It j *, € A %.^ ? > it 0 «z A m dg 

and if the A -th symbol in % is different from + 7 

then Afr is an infinite subset of C j , 4J - CAeu.-. 

...uA& u A0u*#. u A g ^ ) and its complement infj, 41" 

- (A9u... u Ae u-S^u... uA^mi) is infinite, too. 

Let us fix an integer •# & 4 such that neither 

A) nor 4> contains -f (the unary sequence,consis

ting of /rt symbols -f- ) as a connected subsequnce. 

The sets C O , 2** 1 >, A0} *.., A e , Ai,..., AL^ are evi

dently pairwise disjoint. 

We shall make A algebra of type A . For all 

a « A put a + » j a, • for all a e £ Of •%& 1 put 

d tsyCd) where jp is a fix*d one-to-one mapping 

ot C 0, ps J onto Am j if 0 * A m. c and if the 

A -th symbol in - * is i 4* + f then for all 
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O, * ^Je-* Put V ^ f a ) * ®hCa) wh*re ^ iS a 

fixed one-to-one mapping of A^.^ onto A ^ f it 0 < 

< Jk, m d, and if M -th symbol in t^ is i * + > 

then for all a « A*. .* P«t f4
A*(*>) m y^(a,) whe

re ^ is a fixed one-to-one mapping of A j ^ ^ on

to Kj^ . The definition of the algebra A is not 

yet completed, but realize this: cu* * is alrea-

dy defined for all a m A and a —• a/1,1* is a 

one-to-one mapping of A onto A 9 similarly, 

a * is already defined for all o» « A and 

a- —¥ d*1* is a one-to-one mapping of A onto 

^dm * by tne assumption stated at the beginning of 

this proof, Jbr1 is not yet defined for any Sr c A e 

and for any J" c A ^ . Let us fix an element cC m 

e A . ie can complete the definition of the algeb

ra A in this way: it Jtr e AQ 7 then /r1 is the 

uniquely determined a € A such that a?** m Jlr • 

it Jr m A j . then * ' • « • . in all other cases the 

H f f 

operations are defined arbitrarily. 
In this algebra A f the equations < x , ***** > 

and < x*1*-1 , y , * * n % > ( <+*> X being diffe

rent from x ) are valid and thus the theory £ m 

m < < x, ***** >, <****x,<£***> 1 is consistent! 

£ u « * * f x * > ? is evidently inconsistent, 

attUEM-2* *** il - f/n4 ) 4 € % •*•*• **4 * 4 

for all ic'I •nA <fc*<i {i i 1 ) ̂  • ^ * 2 . Ti-e 

supremum of the set of all atoms in £* i» just the 



set of all & -equations that are either constant or 

trivial* 

Proof. Denote the a up rem um by tf and the set 

of all «d -equations that are either constant or tri

vial by C . By Lemma 2, we have C S* if . Lst 

Ctuj f **£ > ê  C • Then tt̂  4* mr% and either m^ or **£ 

is not a constant A -term, so that it is equal to 

x * for some * e X and some unary sequence /> . 

There exists evidently a unary sequence 75 4* & such 

that <i4^ f /n£ > H- <«x*, x * > , By Lemma 5 there ex

ists a consistent theory and hence an atom !# in £^ 

such that h u {< x*, x >J is inconsistent* As 

< **, x* > * E , we have < * v ** > * * 

and consequently, < *rf , **£ > # 5/ * fe get 2/«. 

• C * 

5 3* Supremuy of the set of atoms in i£ ; lit 

QMS. <**, - 2 f9? ffflf % * * 

Let *d •» 6it̂  )<im % be a type such that there 

exists an i0 « I satisfying ^ s. 2 ; let us 

fix such an i# . 

For all w € Wa and />t • 4f if %*.. defi

ne iir^ in this way: wlm *r$ &>**"* ^(*rm
f ...., «rm) -

Lamia 6* Let tc£ and «£ be two different ele

ments of W^ end * , ̂  two different elements of 

X r% (S (*%) v £ (*% > i .'• Then thsre sxist two dif~ 

ferent elements i?4 , 5 | i W ^ such that 
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^ » ' « 5 > > - ^ , % > and X A C-SC**5> u 5 C*ii|>)£ 

fi CX- <<vJ) n CSC<*r;> w S Ci<£ » . 

Proofs For tach <n> m 4>2, 3,..* Itt ̂ ^ be 

tht endomorphiam of WA dtfintd by V.m, (ty>) ** *xffi 

and ^ ( f c ) » * for all X € X - <1M . Evidently, 

wt hava <«*, , *$ > H- < ^ C ^ ) , ̂ C ^ > > and 

X n CSC^C«5))u5C^C^))>SCX-<^J)nCS(<«5>uSC^»» 

Thtrt txiata an inttgtr m> & 4 8uch that x* • 5 C«i£ > 

and * a £ SC4ir2) # It ia aufficitnt to provt tht fol

lowing aaatrtion for all tf 9 t£ m W^ i whenever 

m, fe 4 is an inttgtr such that # # £ Ct^ ) 9 

*** * SCt a) • and faCtym^mC\). , than t f . « t A . 

Wt ahall prove by tht induction on tf that tht aaatr

tion holds for this tf and for all \ * V^ * 

Ltt tf e X . If % 6 X - C<yJ , thtn ̂  C V «tf , 

to that (if %m C\ ) as ̂ ^Ct^ )) *fa-(\)* X , ao that 

evidently, *j^ ft^-) *» t* and consequently, \ * \ . 

If \'*.ty, thtn ^ C i f ) as***
1 , ao that (ifi£*Ctf>«. 

* *%m> Cii * } *?• < 42 > * ** an* thu® *ithtr % • *** 

or t̂  •»< <y, .$ in tht first case wt would gtt a contradic

tion with x a f S C tft ) , ao that \ m ty ~ % * 

Iitt \ m ̂  Cif f #,* , tf **
4 > and ltt tht aaatrtion 

hold for tff ... , \(*** . It \% X , thtn tht 

proof ia similar to tht proof in tht caat \ m X . 
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Let ix * X , ao that t% « £ (t£>, ..., t^*') for 

some £ * I and tf f ... , tf*'« ^ . If tm C*,) ~ 

*"2<»fV > ***** 

ao that i m i and *uCt?) • ̂ C t f >,..., t » « f >* **<<**• 

By the induction aaaumption (as x a # 5Ctf ) u 5Ct^) 

evidently impliee *** a) & Ctf*).u SCt™.)9... ), 

wa gat tf «* tf , ... p t̂  10 t̂  , ao that % m \ . 

Lemma 7, Let */j and *£ be two different ele

ments of WA . Than there exiat two different alemanta 

n^ , 5j « tV̂  and an x 6 X auch that 

<mrn f *<£ > *- <5§, I| > and X n Stify) ** X n S(w^)m {*} . 

Proof. As every SCtir) ia a finite eat, tha fi

nite number of applications of Lemma 6 givea tha exia-

tanca of diffarant elements t̂j , *£ e WA aatiafy-

ing <*$,*£> »- <*^ ,*£> and Ca*<* CX rs CS C<i%)u 

u SCn%))) £ 4 . If XnCSCv;) u SCi%)) ia non-

empty, let x ba ita (only) element; if it ia empty, 

let «x be an arbitrary element of X . It ia aufficient 

to put ^ * •* C%Mt .,,, x ) and *£-* \t*±$x#.,.,x >. 

Lemma 8. Let a non-trivial J -equation<*£,<si£ > 

and an element X * X be given; let X n 5 Cocr; ) m 
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m X A SCtt£>-» {*/ . fhen there exists a consistent 

A -theory £ such that £ u i < ^ f *% > I is in

consistent. 

Proof. Put 3 m S Ciî  ) u S (.i*rx) . Let J> be 

the set of all AA,** where *L m 3 and m, m 4, 2f %,... . 

Let K be the set of all constant A -terms belon

ging to D j put Vm ]) - K . Let X be the set of all 

rational numbers. Put A - » ( V - H X ) U K # *e shall 

suppose that no element of K is an ordered pair; in 

the contrary case we would use (instead of W^ ) some 

algebra isomorphic to W^ . If a is an ordered pair, 

denote by oT its first and by at its second member. 

If a is not an ordered pair, we put ai ** GL and we 

do not define 7? . Let us fix a one-to-one mapping <g 

of A onto X , Let us fix an integer e St 4 such 

that AJ£ $ B for all w € W^ 9 the existence of 

such a a is evident, and C + 1 has the same pro

perty. Let us fix an element at € A • 

We shall make A algebra of type A . Let i 6 

6 1, rn; m 0 . If 4 € X , put '*l*m f4 ) if t. # X , 

define *4
c4> € A arbitrarily. Let i e I , *t4 4» 0 , 

and a.,..., a^. € A • Evidently, at most one of the 

following six cases can take place: 

<i> fj t%9*", *&m,±y c $ I there exists a £ 

( 4 -* £. & m.± ) such that a*i « V x X j there ex

ists an it € X »nch that whenever 4 * £ * <**.; and 

<*̂  * V x X , then 2 ^ * fc ; ' 
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(ii) *. <%,*..,-o^) c J) and «,,..., q ^ c K | 

(iii) i » ^ ; there exists a v e V and an .Ac- e 

€ R such that a^ » < <tr; h, > and 0*a *» ... «• a^, » 

•» < tr , ̂  > j 

(iv) i«4;a { feKje i«,o--ci^s Sa f
l j 

(v) i a i # • there exis ts an t e R such that a. * 

•r <*/; , tL > and a a - . . . * ^ " r <*£""> **• > * 

(vi) .i s <̂  ; there exis ts an /& € R such that 

a f m <«*%, * > and o^» . . . •» O^. » ^<^±"> *- > * 

In these cases we define f. Ca . . a. ) 

successively, in this way: 

(i) « < V V " i $-*>/*>"> 

( i i ) m f 4 C a f , . . . , a ^ > ^ 

( i i i ) - < * , « £ Caf )> > 

(iv) * < # , <2 ^ * * } 

(v) -» "£*(*) > 

(vi) - oc . 

In all other cases we define ^ £<*f »-*-> ̂  ) 

arbitrarily* 

Let us define an endomorphism a* of Vj by 

i>C*> m-1t C*, **f..., x * ) and *>Ca*,) *- & for 

•11 e i X - { * l * 
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Let j? be an arbitrary homomorphiam of V^ in

to A . Put am y C x ) . Evidently, <p (*(*)) m <x,*i(a,)>. 

For all a, c K we have o? C*> Co, » «* 44 ; by induc

tion on or it is easy to prove for all tr € D that 

if X n S Ctr) » {* 1 , then y Ĉ i fv)) » <«/; *£ Co,) > . 

We get 

pCftCtOw;), *C*jr ***),..., ̂ Cuf***))) -

« *JT*C«J Co.)) « a, • £> Cx) 

and aimilarlyf 

?Cl^ (*><«£), ̂ teg*1*),..., iXw***))) m cc , 

Aa thia holds for all homomorphiama <p, A is a model 

of the theory £ composed ofV*..£ fodtfj), *>f«5tt).,... 

... , * Cw^)) > and <%(»(<*%),>>(<*£**),*.. 

...f j> («£**», ^ C ^ f l ^ ) , ^ ^ ^ . . . , ^ C^ 1*)) > 

where 5| arises from uj by exchanging x . with some 

element bt X -ixi, Thus, £ is consistent, and E u 

v C< it^ , v£> } is evidently inconsistent* 

tNftTII 3*>«t A m (m,i)imx where itt4# a 2 

for some i# c I . The aupremum of the set of all atoms 

in &d is just 4g $ the greatest element of -^ . 

Proof. Let if be the aupremum. Suppose If 4 » ^ , 

so that some non-trivial equation belongs to if, By Lem

ma 7, if containa a non-trivial equation < **̂  f **£ > 

satisfying the assumptions of Lemma 8; by Lemma 8 there 

- Ш - ' 



exists a consistent £ • £^ such that £ u i<^ , 

%TZ > ? ia inconsistent* As E is consistent, the

re exists an atom A in X^ such that £ fi A . We 

have £ u <<*%,*£>) « -A u ^ -* A , so that A is 

inconsistent - a contradiction. 

Let us give a re-formulation of Theorem 3. A class 

HfL of algebras of type A is called non-trivial if 

it contains at leaat two-element algebras*it is called 

non-extreme if it is non-trivial and does not contain 

all algebras of type A • 

Theorem 4. Lat A m Cnt^ )^ % . where «^ & 2 for 

some i # e l . For every non-extreme primitive class VC 

of algebras of type A there exists a non-extreme pri

mitive class & of algebras of type A such that 

*Ct n & is trivial. 
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