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Comment ationes Mathematicae Universitatis Carolinae 

13,3 (1972) 

* -BIREGULAR RINGS 

Christopher J. DtfCKENFIELD, Gambler 

Introduction. Regular rings were f irs t define* by von 

Neumann t l j an* use*, in connection with continuous geomet

r i e s , there being an isomorphism between a continuous geo

metry an* al l principal le f t ideals of some regular ring. 

The theory was later expan*e* by introducing the notion of 

a * -regular ring, an* biregular rings were *evelope* as a 

two-sirterf analogue to regularity. It i s the purpose of this 

paper to develop a two-si*eri analogue to ;* -regularity, an* 

to produce an isomorphism theorem analogous to the above. 

!• Medlar.,* -regular aft* frireguiar r|n£g» 
! • ! • Definition. An associative ring R with a unit 

i s regular i f a x a m a* i s solvable in R for a l l a, e It . 

-U2. Definition. A regular rings i s * -regular i f the

re exists an involutory anti-automorphism a, —* a,* of the 

ring onto i t s e l f , such that a,aJ* m. 0 i f ana only i f 

a, m 0 . 

If i i s * -regular an element a, e R for which a m 

m a? i s called self-conjugate. Self-conjugate i*empotents 

are called prelections. 
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We have the following properties (prove* in P I ) . 

1*3. Theorem. If & i s an associative ring with unit, 

then 

i ) It i s regular i f anri only i f every principal l e f t 

i*eal of 1 le generate* by a unique i impotent . 

i i ) H i s # -regular i f an* only i f e^er^ principal 

l e f t i*eal of S ie generate* by a unique projection. 

As a two-ei*e* analogue to regularity we have the f o l 

lowing. 

1*4. Pt f te lUon. A ring i s said to be frlrggular i f eve

ry principal i*eal i s generate* by a central i*empotent. 

*• * ri-treffiflfir rim** 
In view of Theorem 1.3 we woul* expect that the *e f i -

ning eriterlon for a two-si*e* analogue to .* -regularity 

woul* be that efery principal two-si*e* i*eal of sueh a ring 

be generate* by a unique central projection. Our two-siried 

analogue to a * -regular ring wi l l be *efine* as follows. 

2 . 1 . M W t o A ring i s define* to be * -feifffgllflr 

i f i t i s both biregular an* # -regular. 
2*2» Theorem. Every principal i*eal in a * -biregular 

ring X i s generate* by a uniquely *efine* central projec

t ion. 

Proof. Let I be a principal two-si*e* i*eal in X . 

Then, since % i s biregular, I la generate* by a central 

i*empotent e • We see i«mee!iately that Ce*) a • # * , ana 

that Cee*)a*« e e * . Therefore C1-ee*)ee* -» 0 , an* so 

C 1 - e e * ) e e * ( 4 - e e * ) * ~ t C4 - e e* ) e 3 . CC4- ee*>ej*^ 0 , 
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which implies that e m e e * e ** c e * » e * e . e * i s 

central s ince, i f x i s an arbi t rary member of H 9 

e*# » C tx*e)*a Ce«x*)* =* .xe* * Obviously nowf Ce).R .* 

»Cee*)R » I , am e e * i s a central project ion. 

If I m ^LS,* , where 41* ia a centra l projection, 

then fL« ee*,x anrj e e * » 4t<#* for some x , ^ e K • 

Then .{a, «- ee*f* » 41-ee* •• e e * , an* so we have unique

ness* 

We can give a further description of the above projec

t i o n e e * by means of the following* 

2 . 3 . Theorem* If X i s a * -biregular r ing and !*, 

i s a pr incipal i*eal of X generate* by a , then the un i 

que central projection which generates 1^, i s the least 

central element such tha t a*dL m a, . 

Proof. 1^ i s the set of a l l f i n i t e aums § x^cuay^ , 

where X4 t ay^ e 3i , I ** 4 f 2 f ... m Also. 1^» e31 

where e is a central i*empotent, an* by the previous theo-
r8m t %cu ** e e * X , where e e * i s a centra l project ion. 

Then a- *- ee*£> for some x> e & an* therefore 

a e e * s e e * « e e * » C e e * ) 2 * * e e * « m cu .Thus a fee*) m a, 

an*, e e * i s cen t ra l . 

Now l e t d be a centra l element such that <xcL ** a, . 

Then e e * «- % ^1^^% • -§ Midday, m cL % x^ <*>*fri ** dLe.e* . 

Therefore we have ee*R » <£ee*R S dLK , i . e . ee**£ d . 

The center of a biregular ring i s biregular (£43, Theo

rem 4 ) . We also prove the following r e s u l t . 

2 .4 . Theorem. The center of a ^ -regular r ing i s *c — 

regular . 
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Proof* It is well known that the center of a regular 

ring i s regular | an* therefore we nee* only show that i f a, 

Is in the center, then so i s a,* . Let a, m 2 , where E 

i s the center, an* let x be an arbitrary element of X . 

Then cu*x ** (x*a,)* m (a,x*)* m xa,* , i***, a,* i s cen

t r a l . 

Therefore the center of a * -biregular ring i s both 

biregular an* # -regular, an* we get 

2»5« Theorem. The center of a 4c -biregular ring ia * -

biregular* 

A * -regular ring i s sai* to be complete i f the la t t i ce 

of i t s projections is complete, an* Kaplansky 153 has shown 

that i f a * -regular ring i s complete then i t s projections 

form a continuous geometry. If the ring i s commutative, then 

the principal one-sl*e* l*eals are in fact principal two-si* 

*e* i*eals. Therefore, i f the center of a * -biregular ring 

.is complete, the la t t i ce of i t s principal ideals form a conti

nuous geometry. 

Morrison ([43, Theorem 15) has shown that there i s an i s o 

morphism between the principal i*eals of the center of a bire

gular ring an* the principal i*eals of the ring itself* We 

therefore get the following. 
2*6* Theorem* The la t t ice of the principal l*eala of 9 

* -biregular ring B> , whose center i s complete, i s a conti

nuous geometry, i*e. the central projections of a *c -biregu

lar ring form a continuous geometry* 

This, of course, i s the two-si*e* analogue to Kaplansky's 

result* 
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The following theorem i s one of the main results of 

von Neumann C2J. 
2»7» Theorem. A complemented modular la t t i ce admitting 

a homogeneous basis of rank ^ 4- has orthocomplements 

i f an* only i f i t i s isomorphic to the la t t i ce of principal 

left ideals of some * -regular ring. 

In a two-si*e* analogue to this theorem we woul* want 

to replace "the la t t ice of principal lef t ideals of some m -

regular ring" by " the la t t i ce of principal i*eala of some 

* -biregular ring"* 

Nowf a .-K -biregular ring i s biregular, an* the l a t t i 

ce of principal ideals of a biregular ring i s a distributive, 

relatively complemented lat t ice (An*runakievich E6J). If the 

ring contains a unit (which i s the case for a .* -biregular 

ring, since a # -biregular ring i s regular an* a regular ring 

has a unit) then this lat t ice i s a Boolean algebra. A Boolean 

algebra i s certainly orthocomplemented an* so we seek to pro

ve the following 

2.8. Theorem. A Boolean algebra 3 is isomorphic to the 

lat t ice of principal i*eals of some * -biregular ring. 

Proof. Every Boolean algebra B is isomorphic to the 

latt ice of principal i*eals of some Boolean ring X (Birk-

hoff,[73, p .155). Trivially, a Boolean ring i s commutative, 

regular an* biregular. The commutativity gives us that the 

i*entity mapping is an anti-automorphism a, —> <x-* of X 

onto i t s e l f . Also a,a,* m 0 implies a, m a,Zm a,a,* *» 0 , 

since every element of a Boolean ring is an i*empotent. There

fore X is ĉ -regular an^ biregular, an* hence i s * -bire-
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gular. 
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