Commentationes Mathematicae Universitatis Caroline

Ján Ninčák
On a conjecture by Nash-Williams

Commentationes Mathematicae Universitatis Carolinae, Vol. 14 (1973), No. 1, 135--138

Persistent URL: http://dml.cz/dmlcz/105477

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

14,1 (1973)

ON A CONJECTURE BY NASH - WILLIAMS
Ján NINČÁK, Košice

Abstract

This note brings forward an example disproving the following conjecture by C.St.I.A. Nash-Williams [1]: Let D be a directed graph with $n \geq 5$ vertices. If the in-degree as well as the out-degree of every vertex of D is $\geq \frac{n}{2}$, then in D at least two edge-disjoint hamiltonian circuits are admitted.

Key words: graph, hamiltonian circuit

AMS, Primary: 05C20
Ref. Ž. 8.83

We show that every two hamiltonian circuits of the graph G in Fig. 1 have a common edge. To do this we associate to G the rooted tree T in Fig. 2 as follows: The root X_{1} is the image of x_{1}. (Because of the symmetry of G the choice is arbitrary.) The neighbours of x_{1} are the images x_{2}, x_{3}, x_{5} of the neighbours x_{2}, x_{3}, x_{5} of x_{1}. Analogously it is proceeded with X_{2}, etc., until the vertex X_{i} appears in T which is the image of such a vertex of G from which there is an edge directed to x_{1}. If the length of the path from X_{1} to X_{i} is 5 , this path is the image of a hamiltonian line in G. Doing this with all ver-
tices X_{2}, X_{3}, X_{5} and their neighbours etc. we get all the hamiltonian lines in G starting with x_{1}, and in that way all the hamiltonian circuits of G. (Of course, if in construing the branch through X_{3} or X_{5} a vertex appearing already in the second branch through X_{2} is met, this vertex need not be considered in this second branch.) In that way from the tree T the graph G is seen to have four hamiltonian circuits no two of which are edge-disjoint.

Problem: Given a positive integer m, determine the maximum number $f(m)$ such that every directed graph on n vertices admits $f(n)$ edge-disjoint hamiltonian circuits, supposing in addition that all in-degrees as well as out-degrees are $\geq \frac{\pi}{2}$.

Fis. 1

Reference

[1] NASH-WILLIAMS C.St.I.A.: Hamiltonian circuits in graphs and digraphs. The many facets of graph theory (Proceedings of a Conference at Western Michigan University in Novenber 1968, editod by Chartrand, G. and Kapcor, S.F), Brringer-Verlag, Berlin, Heicelberg ora Nev York,1969,pF.237-243.

Katedra matematiky
Strojnickej fakulty VŠT
Zbrojnícka 7, Kosice
Českoslovenctio
(0blatum 24.2.1973)

