Ján Ninčák On a conjecture by Nash-Williams

Commentationes Mathematicae Universitatis Carolinae, Vol. 14 (1973), No. 1, 135--138

Persistent URL: http://dml.cz/dmlcz/105477

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

14,1 (1973)

ON A CONJECTURE BY NASH - WILLIAMS

Ján NINČÁK, Košice

Abstract: This note brings forward an example disproving the following conjecture by C.St.I.A. Nash-Williams [1]: Let \mathcal{D} be a directed graph with $m \geq 5$ vertices. If the in-degree as well as the out-degree of every vertex of \mathcal{D} is $\geq \frac{m}{2}$, then in \mathcal{D} at least two edge-disjoint hamiltonian circuits are admitted.

Key words: graph, hamiltonian circuit

AMS, Primary: 05C20 Ref. Ž. 8.83

We show that every two hamiltonian circuits of the graph G in Fig. 1 have a common edge. To do this we associate to G the rooted tree T in Fig. 2 as follows: The root X_4 is the image of x_4 . (Because of the symmetry of G the choice is arbitrary.) The neighbours of X_4 are the images X_2 , X_3 , X_5 of the neighbours x_2 , x_3 , x_5 of x_4 . Analogously it is proceeded with X_2 , etc., until the vertex X_4 appears in T which is the image of such a vertex of G from which there is an edge directed to x_4 . If the length of the path from X_4 to X_4 is 5, this path is the image of a hamiltonian line in G. Doing this with all vertices X_2 , X_3 , X_5 and their neighbours etc. we get all the hamiltonian lines in \mathcal{G} starting with x_4 , and in that way all the hamiltonian circuits of \mathcal{G} . (Of course, if in construing the branch through X_3 or X_5 a vertex appearing already in the second branch through X_2 is met, this vertex need not be considered in this second branch.) In that way from the tree T the graph \mathcal{G} is seen to have four hamiltonian circuits no two of which are edge-disjoint.

<u>Problem</u>: Given a positive integer m, determine the maximum number f(m) such that every directed graph on m vertices admits f(m) edge-disjoint hamiltonian circuits, supposing in addition that all in-degrees as well as out-degrees are $\geq \frac{m}{2}$.

Fig. 1

- 137 -

Reference

[1] NASH-WILLIAMS C.St.I.A.: Hamiltonian circuits in graphs and digraphs. The many facets of graph theory (Proceedings of a Conference at Western Michigan University in November 1968, edited by Chartrand, G. and Kapcor, S.F), Springer-Verlag,Berlin,Heidelberg and New York, 1969, pp. 237-243.

Katedra matematiky

Strojnickej fakulty VŠT

Zbrojnícka 7, Kočice

Československo

(Oblatum 24.2.1973)