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COMPATIBLE PARTIAL ORDERINGS IN BOOLEAN ALGEBRAS 

D.J. HANSEN, Raleigh 

Abstract: A compatible partial ordering -£ in a Boo
lean algebra (3 •*- ? • ) is a partial ordering defined on 
the set B such that a + ,x -= fr 4- x and a* • x 4s. fr * x 
for each a>, Jlr and x in B with a, 4s Jlr , It is proved 
that if a compatible poset ( B , -̂  ) contains a pair of 
comparable minimal and maximal elements then C3 , -£ ) is 
isomorphic to the cardinal sum of a family of isomorphic 
Boolean lattices. Also, it will be shown that the condition 
of finiteness on a Boolean algebra (3, + • ) is neces
sary and sufficient in order for each of its compatible pe
seta ( B , 4 ) to have a structure of the above form. Last, 
it is proved that the number of compatible posets which can 
be constructed in a finite Boolean algebra of cardinality 

2 ^ ±m 3^ . 

Key-words and phrasest poset, cardinal sum of posets, 
Boolean lattice, Boolean algebra, compatible partial order
ing in a Boolean algebra. 
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!• Introduction. A compatible partial ordering -= in 

a Boolean algebra CB,+, •) is a partial ordering defi

ned on the set 3 such that a, + x 4* Jlr + x and a, • x 4* 

=£ Jlr • x for each cu, Jr and x in 3 with a, *-*>&-. Well 

known examples of such ordering* are X ^ — )-=- l(x,<y.)\xe$jfty€$ , 
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and x • ty - * ? , the dual of 31^ ( -̂  ) ., and the trivial 

ordering TL2(^ ) = i(x,x)\x e 3 1 . 

The objective of this paper is to study the structure 

of those compatible posets C3, -==) which possess at least 

one pair of comparable minimal and maximal elements. It will 

be shown that such a poset is isomorphic to the cardinal sum 

of a family of isomorphic Boolean lattices. Alsof it will be 

proved that the condition of finiteness on a Boolean algebra 

C B , + , * ) is necessary and sufficient in order for each 

of it8 compatible posets ( 3 , -* ) to have a structure of 

the above form. Last, it will be shown that the number of 

compatible posets which can be constructed in a finite Boo

lean algebra of cardinality 2 ^ is 3^ -

Throughout ( B ? +, * ) will denote a Boolean algebra 

with 0 and A denoting respectively the additive and mul

tiplicative identity in B « Also, for each «x in 3 • x* 

will denote the complement of s in 3 • 

Terminology and background material needed for this ar« 

tide may be found in [lj* 

2, Main resulta• 

Lemma !•> If & is a compatible partial ordering in 

(3,4-, * ) and each of <m^ and m^ is a maximal (mini

mal) element in 3 , with A £ mv^ and A £ mn% ( nm^ & A 

and m^ £ A ) then /m̂  -* /m-% • 

Lemma 2. Suppose .£ is a compatible partial ordering 

in ( 3 , 4 , * ) . If there exists in 3 a minimal element 
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and a maximal element which are comparable then there ex

ists a minimal element (I and a maximal cc in 3 such 

that (i £ A £ oc . 

Proof. Suppose each of mv and it iat respectively, 

a minimal and a maximal element in 3 with mv & -M . Let 

X € B such that 4 ^ Jl + fmJ* -£ x . Then 

X =• CM +mv*)x sMx + <rn*x . Now, from the maximality 

of JM and A & x , we have that Jl -= JUx . Alao» 

X* =-= 0 and the minimality of /m, implies that *m. + 

+ X*2* im and thus mx^x « an,* . Hence x * M x + mv*x ** 

» .M +• tin-* and consequently oc * Jit + /wi/* is maximal* 

In a similar manner (h = mv -t- Ji* *£ 4 is minimal. 

Theorem 1. Suppose -= is a compatible partial order

ing in ( B . + , * ) which possesses a comparable pair of 

minimal and maximal elements. Let each of (b and cC fsee 

Lemmas 1 and 2) denote respectively the minimal and maxi

mal element in B such that /3 -£ d £ ot . For each mv 

in B , with cc /3 + /m- * 4 , let T ^ * * x I x e 3 

and (3.m -*» x -» ĉ /m- 3 . Then 

(i) C X-, -» ") is a Boolean lattice with x v 4̂  as 

a« (x+ty) oc 4- x/jf. and x A /y, - ( X + /g-) (3 * xn$, for 

each x and /̂  in T^ > 

(ii) C T m, -£ ) is isomorphic to ( T«,) -= ) and no ele

ment in Xm, is comparable with an element in Xm, *or 

(iii) each element of B is a member of some T ^ . 

Proof. Let x, /̂  e T^ - Then Cx+^)o6 -** x ^ e T.J 
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since fi *.* x , <y> & oc implies that p> £ &(l & (x + /y.)ac^ oc 

and (I -=• xy < tc and thus the inequality & * (x + <%>)<*> + 

+ **L .£ oc . The element (x + q,)vc + x<%> i s an upper bound 

of .x and <ty since x ~ x (x + ty) £ (x+ty) <>c and ^ = 

« <ty (x+ ty) £ (x +<&) oc implies that x » x 4- x/jf- -6 (x + <y~) cc + xtg* 

and 9, «p /^4-x^ •» Cx4-^) oc 4- x/^. . Now suppose X s£ #U 

and /^ ^ <tc- for some ^ e ^ . Then x 4- <̂  ^ ^ and 

x/jf- -£ (tc and thuB Cx + <ty) vc 4* x/̂ - ^ ^ o & 4 > ^ s ^ . Hence 

x v t y . = Cx4-/^)oc 4-x*v i s *he least upper bound of x 

and ij. , In a similar mannerf xA<y.**(x + ty)p>+xfy i s 

in T4 and i s the greatest lower bound of x and f • 

Therefore C T-, , •» ) i s a l a t t i c e . 

Next, i t i s readily verif ied that oca 4- /Jx*4» oc/3 6 ^ 

for each x e B # Now, l e t tf denote the mapping from 

B into Tf audi that % (x) » ©cx + fix* + ec ft for 

each x 6 B . Then, by direct computation, i t i s seen that 
/c i s a l a t t i e e - homomorphism from the Boolean l a t t i c e 

CB,X1 C-6» into C l1^, «• ) . In addition, the mapping T 

i s onto T/j s ince, for each 9 e: T, , trCec<g* 4* /&*#*+vt (I) * <y. . 

Henoe C T4 , -4 ) i s a homomorphic image of C B , X* C.6 )) 

and thus C ? 1 f * ) i s * Boolean l a t t i c e . 

For part ( i i ) , consider the mapping 91 T,,-* T ^ whe

re <p(x) -m mx . The mapping 9 i s subjective since for 

each 9, in T m > oc/»4-9. e T^ and 07 Coc/1 4-<*)« ot/3>m + 

+ my>w <*,/$<}>+sm.y,~ (cc/i 4/rtv) y - p . . low suppose g> ^ ) ^ 9 (x^). 

Then oc/3 4- 9CX4) 4 oc(3 + o;Cx£) implies that oc/3 4- x^ <£ 

^ o t p + Xa,. Since CocfS)*-*-x^ « 4 * Coc/&)* + x% f we thus 

obtain from foc^ + x^) CC«c/.l)*4.xi) * Coc/l + x^)) C<*#*4. xa) that 

* < i * * г 
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Similarly, x1 * x2 if 9 (*i) » 9Cxa) . Hence m i s an or

der isomorphism since, in addition, x-. 4* xa obviously 

implies that 9 Cx>,) *£ 9 C*x2 ) . Therefore C T^ , ^ ) i s 

isomorphic to C Xm, ,* -»)# 

To complete part ( i i ) . , l e t /#. e T^ , a; c T/n. and suppo

se ty .6 %, . Now /San- -a <#* --s cC/m, and /3m, 4s jt ^ «</n, im

pl ies that ctfian &&fi<y> a»<-* ocflm, m ocfiz, . Thus oc/S/m, .6 cc/3/n, 

since ^ .£ oc • Hence 

/TO, .£ oc/S/n -f/m- s? CoC/3 +/m-)(at+mx)ssa\,-j-mx* Coc/S + m)Crni4.m.)*oc/3mt+/it̂ -m, 

Therefore rwt + m,* 4s A and A £ m, + cm* . Now from mx, + 

+ ax* 4s A and the minimality of /3 we obtain (h (an + at,*) m (I 

and thus ft £ cm, + m,* since (h 4s A implies that 

(SCfm + /a*) ^ mt-r-m,* .Consequently jSm, 4s mt/n, . In a simi

lar manner, A & m, + cm* and the maximality of oc Implies 

that av+ mi* 4s oc a»d thus mv/n/ 6 ocm. . Therefore (ion & 

4s mx, 4s anm, 4s. oc/m, and (iav 4s cmm, 4s m, 4: otcn, „ Thus ctfian* -=• 

«• (ocfi>)(an,m)=ot(hfirt .Hence, from Coc/3)mt-arCk/3)m- and cc/J + an m 4 s 

-=. vc[l + /n,f cm** m, . Therefore* i f rm, ^ /n. , no element of 

f Xm.» -* ) i s comparable to an element of C T^, -£ ) . 

Part ( i i i ) follows from the fact that i f oc e B then 

X B T ^ for m, « * + (atft)* . 

Corollary, Suppose *£ i s a compatible partial order

ing in CB, + , • ) , A necessary and sufficient condition that 

C B , & ) be a Boolean l a t t i c e i s that there ex is ts an e l e 

ment oc € B such that 4 4s ot and 0 £ ©c . 

Proof* Let x € B • How A 4s. oc and 0 4s cc implies 

that x £ ocx and x -& oc + x . Prom x 4* ocx we 
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obtain cc + K _4 cc and thus x -= cc « In a similar manner, 

cc* -̂  0 and cc* -£ 4 implies that ec,* .£ * , Hence oc*.£ 

^ X -£ eo and thus, by Theorem 1, CB,-£) « CT,,,.^) , Since 

the condition is obviously necessary, this completes the 

proof* 

Theorem 2» Suppose -= is a compatible partial order

ing in C B , + y ' ) , A necessary and sufficient condition 

for every such poset ( B , --) to be isomorphic to a cardi

nal sum of isomorphic Boolean lattices is that (B, +, - ) 

be finite* 

Proof* If (B, + ,') is finite then 4 obviously 

possesses a pair of comparable minimal and maximal elements 

and thus, by Theorem lt CB , «= ) is isomorphic to a cardinal 

sum of isomorphic Boolean lattices* 

Now suppose every such C B, -£ ) is isomorphic to car

dinal sum of isomorphic Boolean lattices. We first want to 

show that CB,-*-, * ) is complete and atomic and thus be ab

le to conclude that ( B , + , » ) is isomorphic to the algeb

ra of all subsets of some set* Let X denote a non-empty 

subset of B and let J) * i £ Jk^jK Ifĉ  e K , > 4 e 3 , and 

fn. c %>+ } . To simplify notation, let .£4 denote the natu

ral partial ordering \^ C-= ) , For each <p-,<l e 3 , de

fine ty -6 <£ if and only if there exist t e B , < i ; , ^ e j 

such that JQ, s cL± + 1 ,$« <t^ + t and .4H--4 £ . Then £ 

is a compatible partial ordering of ( B, +, * ) and no 

element not in ]) is comparable with an element of 3 * 

Thus C B , -= ) is the cardinal sum of isomorphic Boolean 
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lattices L . t and consequently JD -= L ^ for some <£> . Hen-

ce the largest element AJ^ ot T> isf from the definition of 

D , the least upper bound of the members of X • Thus X 

has a least upper bound, with respect to the natural partial 

ordering ^ , and consequently ( B , + , O is complete. 

Next suppose ( B ,-+-,• ) is not atomic* Then there exists 

a i r e B , Sr + 0 , such that i f a + 0 and a . 4 ^ then 

cu is not an atom of B . Hence» by the Hausdorff maximali-

ty principle, there exists in B » with respect to ^ , a 

maximal descending chain C from frf.*. -64 a ^ ^ ... ^ - V s ^ , 

such that each 0-4, 4- 0 and A a . s 0 . Let Jf» < ^ l 4 ; 6 l 

and 4 ^ ^ ^ for some ct̂ - of the chain C I . For each p*, 

<£ e B , define >p, .£ ^ if and only if there exist * , 

t e B and an h>\, , Jh-£ e H such that 4?, * iî /fc + t , £,** 

« &£4> -1- t , and 41, £4 £ • Again, -6 is a compatible par

tial ordering of ( B, + , * ) and no element not in K is 

comparable with an element of H . Thus, from compatibility 

and the hypothesis on each such poset ( B , -» ) - there ex

ists a Boolean lattice L£ in f B, £ ) such that M •* L£ . 

Hence ( B , +• , • ) is atomic since ^ v ^ «-- 0« contradicts 

the fact that the smallest element as, of H has the pro

perty that % 4. 0 . Therefore C B , +•, * ) is isomorph

ic to the algebra of all subsets of some set li . Thus, with

out loss of generality, we may assume that B -=• T(VL) and 

that -f and • denote, respectively, set union and set in

tersection. Finally we want to show that (B, + •) is fi

nite. Assume that VL is an infinite set. Let JVt denote 
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the collection of all members of B which are finite sab-

sets of II . Define <$, &. <̂  if and only if there exist a 

t 6 B and an tm^, m,x e M such that JQ, « m ^ + t , <£ « 

m /taj, +-1 , and 4' -£4 9, « Again we can conclude that £ is 

a compatible partial ordering of C B, +• , • ) and that no 

element not in il is comparable with an element of Jl . 

Thus, from oompatibility and the hypothesis on CB, -6 ) the* 

re exists a Boolean lattice L&, *** CB, ̂  ) such that 

il = Ljfe, . Hence some finite subset of H is the largest ele

ment in .M and this is not possible since ^ coincides 

with *A in Ji and U is infinite. Therefore CB, +•, - ) 

is finite. 

Theorem 3. If C B, +, * ) is a finite Boolean algebra 

of cardinality 2^ then the number of compatible partial 

orderings in CB, +•, * ) is 3/n' . 

Proof. For eaoh Cco,/3)eBxB with oc + /J*4,XC-6)« 

= i(x,<y,)\(x+ty)p>+x<ty= x and 0X+/U.W + oc/u. *. .̂i is a compa

tible partial ordering in B such that <* is maximal, fi 

is minimal, and /J «£ 4 .6 cc . Hence by Theorem 1 and the 

preceding statement, the enumeration of the compatible par

tial orderingB in C B , +, • ) is reduced to determining the 

cardinality of the set £ m {(x,<y>) I Cx,^-) e B x B and 

* «+ <o. « \% .The task of counting the number of elements in 

S is accomplished by referring to the associated Boolean 

lattice CB 9X^C^)) of CB, +-, • ) , for each element x 

ef dimension J*, 0 £ fe £ m, , in C 3 1 X i (&)) there are 2** 

elements ^ in B sueh that # + 4$, *• 4 . Thus, since there 

are C^j^ elements in CbfJL^C^)) which have dimension %v , 
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there are 2 C^ %, ordered pairs Cx,<#-) «-* B x B such that 

x haa dimension to, and a + /^ a 4 - Hence the cardinality 

of 5 is £ 2 ^ C ^ ^ « ^ . 

R e f e r e n c e s 
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