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Commentationes Mathematicae Universitatis Carolinae 

15,1 (1974) 

A NOTE ON NONISOMORPHIC STEINER QUADRUPLE SYSTEMS 

C.C. LINDNER x ) and T.H. STRALEY, Auburn 

Abstract: Let (<2j$,) and ( V, w) be Steiner quadrup
le systems. In CU J. Doyen and M. Vandensavel give condi
tions under which the IVI mutually disjoint subsystems 
(Gi?< <ixl, ̂ V) of the direct product C Si x V, £>•) can be 
unplugged and replaced with any collection of quadruple sys
tems (Q> x i*} >&(*)) so that the only subsystems of order 
J 0,1 of the resulting quadruple system are the quadruple 
systems ( Q> x 4 xl 9 & (x) ) . Namely-, if IV I = 2 and 
J £311 m 2 or 40 (mod 12) , I Q f -# 2 « la this note we ge
neralize this result to (v$ & ) contains no subsystem of 
order |&| and for any cfo > 4 9 /ru the order of a subsystem 
of (Yf nr ), I fi I S <r» =£ 2 or 4 ( «ruxi> 6 ) . 

Key words: Steiner quadruple systems, nonisomorphic 
Steiner quadruple systems. 

AMS: Primary 05B05 Ref. 2. 8.812.3 
Secondary 62K10 

1. Introduction. A Steiner quadruple system (or more 

simply a quadruple system) is a pair (Q 9 g } where fi is 

a finite set and j is a collection of 4-element subsets 

of & (called blocks) such that any three distinct elements 

of fl, belong to exactly one bloc); of £ , The number I fl I 

is called the order of the quadruple system C Q, £ ) . Hanani 

proved in I960 that the spectrum for quadruple systems is 
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the set of all positive integers m, s 2 or 4 (/rrvocb 6 ) 

[2]« If (CI, 3,) and CY,1>0 are quadruple systems and 

( fi x Y> Jlr ) denotes their direct product, then for each 

X in T, ( J x ^ i , ^ ) is a subsystem of ( Q x Y9& ) 

which is isomorphic to (&,$,). See C13 or C53 • It is well 

known that a subsystem of a quadruple system can be "un

plugged" and replaced with any quadruple system on these 

same elements and the result is always a quadruple system. 

Since the subsystems ( Q, x ixl, JZr ) are mutually dis

joint we can independently replace each subsystem 

( (J x 4# I , %r ) of C Q, x Y, A* ) by any quadruple system 

( Q x ^ } * Jtr(x)) a1-*-* the result is still a quadruple "sys

tem which we will denote by ( Q x Y, j2r* ) . It is of con

siderable interest to determine under what conditions for 

every collection of quadruple systems (ft x € oc} ,> Jir Cx )) 

the only subsystems of ( S x Y , * * ) of order I fl I are 

the quadruple systems C(& x{x?> «(r Cx)) • (The reason 

being, of course, that t collections of 1VI quadruple 

systems of order iftt such that no two collections can 

be isomorphically paired gives t nonisomorphic quadruple 

systems of order IQI IY1 •) In 113 J* Doyen and M« Van-

densavel give conditions under which this is the case* Na

mely, when lYI m 2 and lQt m 2 or 40 ((mod, 42) , (Ql 4s 

4-2 * In this note we generalize these conditions to ca

ses where IY1 > 2 . The techniques used in this note are 

analogous to those developed by the authors in £33*£43, and 

C7J. 
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2. Nonisomorphic Steiner quadruple systems* Let CQ,g,) 

and C Yy ny ) be quadruple systems and C A x y, fr ) their 

direct product. For each x in V let CQ*'Cx*>-&'C*x)) 

be a quadruple system. In view of the above remarks, if the 

IVI mutually disjoint subsystems Cfix^iX?,-^) are 

unplugged and replaced by the lyi mutually disjoint qua

druple systems ( 8 x -(^i, J^Cx)) , the result is still a 

quadruple system which, as above, we will denote by 

CQ x y, J2r*) . We remark that the iyi mutually disjoint 

quadruple systems ( § x 'ix I , JZr (x)) are not necessarily 

related to the corresponding subsystem CS x $xl , Ar) nor 

to each other. This observation is crucial in what follows. 

Now let (Si x V, Jtr* ) be the quadruple system constructed 

above and let (T, Xr*) be any subsystem of (8 x V, ir*) , 

Set y*.. -ix € y I (%>*) e T } and T^-tfcc ftlCj^JcTJ. 

Lemma. If ( U x V ^ * ) , ( T , &r*), Y* and Xu, are as 

above, then IT^I » I T^ I for all x , ^ e V ' . 

Proof. Let * 4» fy e V* and let C to, x ) be any ele

ment in T^ and Ct?#.) any element in T*j # For each 

element ( .&',*) e T# there is exactly one element 

C t \ ^ ) e T ^ such that i(*,x ),cV,x), <t,<yO, Ct\^)}c ir*. 

However, if V * ^ then t* 4. t so that 1 T^ 1 £ -T^l . 

A similar argument shows that IT,-* I -£ I T^ I so that i T x I =? 

Theorem 1. Let C G, x y, -Sr*) be the quadruple system 

constructed above. Suppose that C y, nr ) contains no subsys

tem of order I ft I .If for any 01, > 4 , where m, is the or-
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der of a subsystem of CY, «r ), I ft 1/ *tu ^ 2 or 

4- C/nvo-ol 6 ) 9 then the only subsystems of ( Qi xV, Jr*) of 

order Id I are the IV I mutually disjoint quadruple sys

tems tbxKxl7fr<.X)) . 

Proof. Let ( T , Sir* ) be a subsystem of C & x V, ir* > 

of order 1 ft I and let V* * «C X e V I C £, x ) & T 3- « Sine© 

C y, IK ) contains no subsystem of order I & I it follows 

from the Lemma that ] T* I » IT*. I * t «£ 2 for all iX,/jf e V . 

Hence ITls/m/t where «m » IVI . Since each of 

(filx^al,^*) and C T , Sbr* ) is a subsystem of 

C & x y> J^* ) and T* x * x } « (Gl x -vex } ) O T we must na

ve either 1 T* I « I T>< x < * 5 1 -» 4 or I T^ I s 2 or 4 (.mofl-- 6 > • 

As 1 T* I : £ 2 we must have I T x I = 2 or 4 C tm-ati 6 ) . 

Hence ITI//rtv s 2 or 4C rrnovL 6 ) . But C V *} nr) is a 

subsystem of C y, 4f) and so IV'I » ^ * Hence T • Jx{jt} 

for some ex in V which completes the proof. 

Let J9 and t be positive integers. We will denote 

by ?^ the number of t -tuples of integers (x^ , •*« , • *• 

M , . ^ ) where x¥f+X2+-..«4'Xi-='.4> and" 0 ̂  x^, < *> > 

X, = \ , 1,.+., t. . !2he following theorem is the main result 

in this note* 

Theorem 2» Let £ and ir be positive integers s 2 

or 4 C /moot 6 ) and suppose there exists a quadruple system 

(y, JJU) of order «r containing no subsystem of. order £ . 

If for any m, > 4 ? where fry is the order of a subsystem 

of ( y, u,) j I At /<& m 1 or 4 (mjocL 6 ) then the con

struction in Theorem 1 gives at least P^ nonisomorphic 
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Steiner quadruple systems of order qy where t is the 

number of noniaomorphic quadruple systems of order <j -

Remark. Note that if 1Y1 m 2 and I 0,1 a 1 or 

dO C tmaii> M ) 9 \ & I 4- 2 , the conditions of Theorem 2 are 

automatically satisfied so that Theorem 2 is in fact a gene

ralization of the result of Doyen and Vandensavel til men

tioned in the introduction. 

3. Example. Let £ » \k and /ir *r 4- , N.S* Mendelsohn 

and H.S.Y. Hung have shown that there are exactly 4 noniao

morphic quadruple systems of order 14 £6]. The only subsys

tems of a quadruple system of order 4 have orders 1, 2, or 

\k #• 
4 • Since neither —r— nor —;— is m 1 or 

4(<m-sct6) , Theorem 2 gives at least PJ • 35 noniaomor

phic Steiner quadruple systems of order 56 • As far as the 

authors can tell, this cannot be obtained via the results of 

Doyen and Vandensavel [1] since 56 = 28 . 2 and 26 ^ % 

or 40 itmjoditl) . 

The spectrum for pairs of nonisomorphic quadruple sys

tems remains open. 
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