Commentationes Mathematicae Universitatis Caroline

B. J. Pearson
 Concerning the structure of dendritic spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 15 (1974), No. 2, 293--305

Persistent URL: http://dml.cz/dmlcz/105553

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae
15,2 (1974)

CONCERNING THE STRUCTURE OF DENDRITIC SPACES

B.J. PEARSON, Kansas City

Abstract: A dendritic space is a nondegenerate connected Hausdorff space such that each two of its points are separated by a third point. In this paper we obtain some structure theorems for general dendritic spaces and for dendritic spaces satisfying certain weak compactness conditions stated in terms of the convergence of nets of point sets.

Key words and phrases: Dendritic spaces, tree-like spaces, arcs in dendritic spaces, nets of point sets.

AMS, Primary: 54F50
Ref. Ž. 3.961.1
Secondary: 54G15, 54A20

1. Definition. Suppose $\left\{U_{n}, n \in D\right\}$ is a net of point sets in a topological space. Then lims sur U_{m} is the set of all points x such that for each open set u containing x and each m there is an $n \geq m$ such that $u_{m} \cap u \neq D$, and \lim inf U_{n} is the set of all points x such that for each open set U containing x there is an m such that if $m \geq m$ then $U_{m} \cap u \neq \varnothing$.

It should be noted that it does not follow, even for sequences, that if $x \in \lim \inf U_{n}$, then for each. m there exists a point x_{m} of U_{m} such that x is a cluster point of the net $\left\{x_{m}, n \in D\right\}$. Consider the following counterexample.

Example. For each positive integer n let U_{n} be the set of all ordered pairs (n, m) of integers such that $0 \leq m \leq m, \operatorname{let} x=(0,0)$ and let $X=U_{n} U_{n} \cup\{x\}$. Let φ be the collection of all point sets. U in X such that either $x \notin \mathbb{U}$ or $x \in \mathbb{U}$ and $X-\mathbb{U}$ is a choice set for the collection of all $U_{n}, i . e .$, for each n there exists a point x_{n} of U_{n} such that $U_{n}-U=\left\{x_{m}\right\}$. Take \mathscr{P} as a subbase for the open sets in X. Thus. X is a Hausdorff space, and $X-\{x\}^{\prime}$ is discrete. Furthermare, $\{x\}=\lim$ inf $U_{n}=$ $=\lim \sup \mathcal{U}_{m}$, but x is not a cluster point of any sequence x_{1}, x_{2}, \ldots such that for each $m, x_{m} \in U_{m}$.

The proofs of the following fundamental theorems parallel the proofs of similar theorems on nets of points and are omitted.

Theorem 1. If $\left\{U_{n}, n \in D\right\}$ is a net of point sets with the point x in its lim sun, then some subnet of $\left\{U_{n}, n \in D\right\}$ has x in its lim inf.

Theorem 2. If $\mathscr{\rho}$ is a collection of point sets and x is a limit point of US, then there exists a net of elements of 9 having x in its lim inf.

Some very general classes of topological spaces may be defined by stipulating that certain nets of point sets of a certain sort have a non-empty lim sup. In what follows we consider one such class of spaces, which is of interest in connection with dendritic spaces. If M is a point set, then the boundary of M is denoted by ∂M and the cardinal of M ia denoted by $|M|$.

Definition. If X is a topological space and h is a cardinal, then X is k-cohesive if and only if the following condition holds. If $\left\{U_{m}, n \in D\right\}$ is a net of connected open sets in X such that (1) if $m \neq n$, then $u_{m} \cap u_{m}=\varnothing$ or $u_{m}=u_{n}$, (2) for each $m, 0<\left|\partial u_{n}\right| \leqslant k$, and (3) $\lim \inf u_{n} \neq \varnothing$, then $\lim \sup \partial u_{n} \neq \varnothing$.

Theorem 3. If the space X is either compact or locally connected, then for each finite cardinal k, X is \& -cohesive.

Proof. Let $\left\{U_{n}, n \in D\right\}$ be a net satisfying the conditions of the above definition, and for each m let $\partial U_{n}=\left\{x_{m 1}, \ldots, x_{m k}\right\}$. If there is an m such that for each $n \geq m, U_{n}=U_{m}$, then clearly limsun $\partial U_{n} \neq \varnothing$. Hence we assume that for each m there is an $m>m$ such that $U_{n} \neq U_{m}$. Let $x \in \lim \inf u_{n}$. Thus for each $n, \notin \in$ $\in X-u_{m}$. If X is compact, then the net $\left\{x_{m 1}, m \in D\right\}$ has a cluster point y and hence $y \in \lim$ sup ∂U_{m}. Suppose X is locally connected and x is not a cluster point of $\left\{x_{n i}, n \in D\right\}$ for $i=1, \ldots$, her . For each i there exist an open set γ_{i} containing x and an m_{i} such that if $n \geq m_{i}$, then $x_{n i} \notin V_{i}$. Let V be a connected open set containing x and lying in $\cap_{i=1}^{k} V_{i}$, and let $n \in D$ such that for each $i, n \geqslant m_{i}$ and $u_{m} \cap V \neq \varnothing$. Since V is connected and contains both a point of \mathbb{U}_{n} and a point of $X-u_{n}, V$ contains a point of ∂u_{n}, which is a contradiction. Therefore \boldsymbol{x} is a cluster point of $\left\{x_{n i}, n \in D\right\}$ for some i, and hence $\lim \operatorname{sun} \partial U_{n} \neq \emptyset$.

2. Dendritic spaces

Theorem 4. If x is a point of the dendritic space X and \mathbb{U} is a component of $X-\{x\}$, then \mathbb{U} is open and x is a limit point of \mathbb{U}.

Proof. Let $y \in U$. There is a point \neq such that $X-\{\nmid\}$ is the union of two disjoint open sets V and W such that $x \in V$ and $y \in W$. Since $W U\{$ f $\}$ is connected and does not contain $X, W \cup\{\notin\} \subseteq \mathbb{U}$. Hence \mathbb{U} is ofen. Since X is connected and each component of $X-\{x\}$ is open, x is a limit point of \mathbb{U}.

Theorem 5. For each two points x and y of the dendritic space X there exists one and only one component of $X-\{x, y\}$ with x and y as limit points.

Proof. Let C be the component of $X-\{x\}$ containing y. From Theorem $4, x$ is a limit point of C. There is a point \uparrow of X such that $X-\{\nmid\}$ is the union of two disjoint open sets \mathbb{I} and V with $x \in \mathbb{U}$ and $y \in$ $\in Y$. Clearly, $\notin \subset-\left\{\begin{array}{c} \\ \boldsymbol{y}\}\end{array}\right.$. Let K be the component of $C-\{y\}$ containing \nVdash. Now C is dendritic, and hence \mathcal{Y} is a limit point of \mathbb{K}. Since $C-\mathbb{K}$ is a connected subset of $X-\{れ\}$ containing $y, C \sim K \subseteq V$. Hence x is not a limit point of $C-X$, so that x is a limit point of X. Suppose H is a connected subset of X -- $\{x, y\}$ containing X. Since $\notin \in H \in X-\left\{X^{\}}\right\}, H \in C$. Since $\nprec \in \mathcal{H} \subseteq C-\{y\}, \mathcal{K} \subseteq K$. Hence $H=K$, so that K is a component of $X-\{x, y\}$ with limit points x and y. If I is a component of $X-\{x, y\}$ different from K with limit points x and y, then $\mathcal{L} \cap K=\varnothing$,
and hence no point of X separates x from y.
Definition. If a and b are two points of the connected space x, then the interval ab of x, denoted simply by $a b$, is the set of all points x of x such that $x=a$, $x=b$ or x separates a from br in X. If $x, y \in a b$, then $x<y$ if and only if $x=a$ and $y \neq a$, or x separates a from. $\{y, b\}$ in x.

Simple examples may be given to show that intervals in dendritic spaces may be neither compact nor connected. It follows from the next theorem that they are, however, closed. An example is then given of a dendritic space in which each interval is totally disconnected.

Theorem 6. If a and b are points of the dendritic space X, then there exists a collection \mathscr{S} of disjoint connected open sets in X such that $X-U \varphi=a b$ and for each element U of \mathscr{Y} there exists a point x of ab such that $\partial u=\{x\}$.

Proof. For each point x of abr let \mathscr{S}_{x} denote the set of all components C of $X-\{x\}$ such that C contains neither a nor b and let $U_{x}=U \varphi_{x}$. Let $\varphi=$ $=U\left\{\mathscr{S}_{x} \mid x \in a b\right\}$. It follows from Theorem 5 that for each two points x and y of X there is a unique component $C_{x y}$ of $X-\{x, y\}$ that has x and y as limit points and such that if x and y are in $a b$, then $x<y$. Let $K_{x y}=C_{x y} U\{x, y\}$. Suppose $\neq \in X-(U Y U a b)$. Since $X=U_{a} \cup \psi_{b} \cup X_{a b}, ~ t \in K_{a b}$, Let I be the collection of all $K_{x y}$ such that $a \leq x<y \leq b$ and $\Re \in K_{x y}$. Partially order \mathfrak{J} by set inclusion. Let \mathfrak{P}
be a maximal chain in \mathscr{y}, and let $\mathbb{K}=\cap \mathcal{P}$. If $a \leqslant x \leqslant b$, let V_{x} be the component of $X-\{x\}$ containing a if $x \neq a$ and let $V_{x}=\varnothing$ if $x=a$, and let W_{x} be the component of $X-\{x\}$ containing f if $x \neq b$ and let $W_{x}=\emptyset$ if $x=b \quad$.

Case 1. For each two points w and x such that $a \leq w<x \leq b$ and $X_{w x} \in \mathcal{P}$ there exist two points x and y such that $u<x<y<x$ and $K_{x i y} \in \mathcal{P}$. Let γ..be the union of all γ_{x} such that for some point y, $a<x<y<b$ and $K_{x y} \in \mathcal{P}$. Let W be the union of all W_{y} such that for some point $x, a<x<y<b$ and $x_{x y} \in \mathcal{P}, x-X_{w x x}=\left(V_{w} \cup u_{w}\right) \cup\left(W_{x} \cup u_{z}\right) \subseteq V_{x} \cup W_{y}$. Furthermore, V_{x} and W_{y} are disjoint connected open sets containing a and b respectively. It follows that $X-K=$ $=V \cup W$ and V and W are disjoint connected open sets containing a and b respectively. Suppose K contains two boundary points x and y of V. Some point q of x separatea x from y. Since $V \cup f x, y\}$ is connected, $2 \in V$. For some w and \approx such that $K_{w z} \in \mathcal{P}, q \in V_{w}$. But $K_{w z}$ is a connected subset of $X-\{q\}$ containing x and y. Therefore \mathcal{K} contains only one boundary point x of V and only one boundary point x of W. Clearly, $a<x<x<b$ and $K=K_{x z}$. There exists a point y such that $x<y<x$. Now $\uparrow \in K_{x y}$ or $\uparrow \in K_{y x}$, say $\neq \in$ c $K_{x y}$. Hence $K_{x y} \in \mathscr{Y}$, and $K_{x y}$ is a proper subset of every element of \mathcal{P}, which contradicts the maximality of \mathcal{P}.

Case 2. There exists a point w such that $a \leqslant w<b$ and for each two points x and y such that $w \leq x<y \leq b$ and $K_{x y} \in \mathcal{P}, x=w$. Let $V=V_{w} \cup U_{w}$. Let W be the union of all W_{y} such that $w<y<\&$ and $X_{w y y} \in P$. It follows that $X-K=V U W, V$ and W are disjoint open sets, W is connected, $b \in W$, and if $w \neq a, a \in V$. We again arrive at a contradiction if \mathbb{K} contains two boundary points of W. Hence K contains only one boundary point z of W. Clearly, $a \leqslant w<x<b$ and $X=X_{w z}$. There exists a point y such that $i \omega<y<z$. $_\in X_{w r y}$. $K_{w y} \quad$ is then a proper subset of every element of \mathcal{P}, which is a contradiction.

Case 3. There exists a point x such that $a<x \leqslant b$ and for each two points x and y such that $a \leq x<y \leq x$ and $K_{x y} \in \mathcal{P}, y=x$. Thus Case 3 is similar to Case 2.

Example. Let x be the set of all points $x=x_{1}, x_{2}, \ldots$ of Hilbert space such that $x_{1}>0$, for each $n, x_{n} \geq 0$, and for all but finitely many $n, x_{m}=0$. For each point x of X and for each positive number r let i be the largest integer n such that $x_{m}>0$ and let $D_{x r}$ be the set of all points y of X such that (1) $x_{m}=y_{m}$ for $n \neq i$ and $n \neq i+1$, (2) $0 \leq|x-y|<r$, and (3) if $x \neq y, y_{i+1}>0$. Thus $D_{x r}$ is the intersection with X of a semicircular region together with the point x. Note that if $y \in D_{x r}, y \neq x$, and $s>0$, then $D_{x x} \cap D_{y s}=\{y\}$ and $D_{x x} \perp D_{y s}$. For each x in X and each map f of X into the positive reals let $\Psi_{0}=$ $=\{x\}$, let $u_{1}=D_{x, f(x)}$, for each $m>1$ let
$U_{n}=U\left\{D_{y, f(y)} \mid y \in U_{n-1}-U_{n-2}\right\}$, and let $u_{x f}=U_{n} U_{n}$. Now if $x \in \mathcal{U}_{x f} \cap U_{\psi q}$ and $h=\left\{\wedge g\right.$, then $u_{x h} \in U_{x f} \cap$ $n U_{y g}$. The collection of all such sets $U_{X f}$ is then taken as a base for the open sets in X. In order to show that X is connected suppose X is the union of two disjoint open sets \mathbb{U} and V and first show that the set of all points x of X such that $x_{m}=0$ for $m>1$ is a subset of one of the two sets \mathbb{U} and V, say U, then show that for each positive number t the set of all points x of X such that $x_{1}=t$ and $x_{n}=0$ for $n>2$ is a subset of U, and finally conclude that $V=\varnothing$. Now suppose a and \& are two points of $x, a_{m}=0$ for $m>1$, and $\&$ is the largest integer m such that $\delta_{m} \neq \varnothing$. For $n=0, \ldots, k$ let $n^{n} \in X$ such that $k^{0}=a$ and for $m>0, p_{i}^{n}=f_{i}$ for $i \leqslant n$ and $p_{i}^{m}=0$ for $i>n$. The interval ab of X is the union of the straight line intervals [$\left.n^{n}, 1^{n+1}\right]$ of Hilbert apace for $n=0, \ldots$ $\ldots, k-1$. In the apace X, p is a limit point of ab if and only if for some n such that $0<m<n, \eta=p^{n}$. Similar considerations will show that each interval of \boldsymbol{x} has at most finitely many limit points and hence is totally disconnected.

Theorem 7. If X is dendritic and 1 -cohesive, then each interval of X is connected.

Proof. Let a and b be two points of X, and suppose ab is not connected. Since it follows from Theorem 6 that abl is closed, abl is the union of two disjoint closed sets \mathcal{H} and X. Let \mathcal{G} be the collection mentio
ned in Theorem 6, let $\mathscr{S}_{H}=\{丩 \in \mathscr{Y} \mid \partial \amalg \subseteq H\}$, let $\mathscr{S}_{K}=\{\Psi \in \mathscr{S} \mid \partial U \subseteq K\}$, let $H^{\prime}=U \mathscr{S}_{H}$, and let $K^{\prime}=U \mathscr{S}_{K}$. Since X is connected, some point of H is a limit point of K^{\prime} or some point of K is a limit point of H^{\prime}. Assume the point \uparrow of H is a limit point of K^{\prime}. 'It follows from Theorem 2 that there exists a net $\left\{\mathbb{U}_{n}, n \in \mathbb{D}\right\}$ of elements of φ_{K} having $\not \approx$ in its liminf. Now since for each $n ;\left|\partial u_{m}\right|=1$ and X is 1 -cohesive, there exists a point q in \lim suk $\left\{\partial u_{m}, m \in D\right\}$. Since K is closed, $q \in K$, so that $\not \approx \neq q$. From Theorem 1 , some subnet $\left\{\partial \Psi_{n_{i}}, i \in E\right\}$ of $\left\{\partial u_{m}, n \in D\right\}$ has q in its liminf. Thus $\left\{U_{n_{i}}, i \in E\right\}$ is a net whose range is a collection of disjoint connected sets in X auch that both p and q are in its \lim inf and for each i, $\left\{\in X-\overline{u_{n_{i}}}\right.$. It follows that no point separates $\not\{$ from q in X, which is a contradiction.

Theorem 8. If a and b are two non-cut pointa of the connected 2 -cohesive space X and every point of $\boldsymbol{X}-\{a, b\}$ separates X into two connected sets one containing a and the other containing b, then X is an arc from a to b.

Proof. It follows from known results without the use of 2 -cohesiveness that X is an arc from a to b in its order topology and that each order interval of X of the form $[a, x),(x, y)$, or ($y, b]$ is open and connected in the original topology of X. It remains to be shown that the original topology of X has a base whose elements are intervals of the above type. Let \mathbb{U} be an open set contai-
ning b, and suppose that for each x in $(a, b),(x, b I-$ $-U \neq \varnothing$. There exists an increasing well-ordered sequence $\left\{x_{\alpha}, \alpha<\lambda\right\}$ of points of $x-\Psi$ converging to \& in the order topology. For each α let $U_{\alpha}=\left(x_{\alpha}, x_{\alpha+1}\right)$. Since $\left(x_{0}, b J\right.$ is open, b is not a limit point of $\left[a, x_{0}\right)$, and hence b is a limit point of $U_{\alpha} U_{\alpha}$. Furthermore, for each $\propto, \partial u_{\infty}=\left\{x_{\alpha}, x_{\alpha+1}\right\}$. Therefore there exists a net $\left\{U_{B}, m \in D\right\}$ of elements of $\left\{U_{\alpha} \mid \propto<\lambda\right\}$ having b in its lim inf. But $b \notin \lim \operatorname{sun}\left\{a u_{n}, n \in \mathbb{D}\right\}$, which contradicts the assumption that X is 2 -cohesive. Therefore $(x, b J$ is open, and similar considerations will show that intervals of the type $[a, x)$ and (x, y) are open.

Theorem 9. If X is dendritic and 2 -cohesive, then each interval of X is an arc.

Proof. Let a and b be twa points of X. From Theorem 7, abr is connected. If $a<y<b,[a, y)=U\{[a, x] \mid$ $\mid a<x<b\}$ and hence $[a, y)$ is connected. Similarly, (yy, bI is connected. Therefore $a b-\{y\}$ is the union of two disjoint connected sets one containing a and the other containing b. Let \mathcal{g} be the collection mentioned in Theorem 6, and for each subset \dot{U} of ab let $\Psi^{\prime}=$ $=U U U\{V \in \mathscr{G} \mid a V \subseteq \mathbb{U}\}$. It is easily seen that if \mathbb{U} is open and connected relative to $a b$, then W^{\prime} is open and connected and that for each point p, p is a boundary point of U relative to $a b$ if and only if 12 is a boundary point of Ψ^{\prime}. Furthermore, if $U, V \subseteq a b$, then $U \cap V=\varnothing \quad$ if and only if $U^{\prime} \cap V^{\prime}=\varnothing$. Therefore the

2 -cohesiveness of X implies the 2-cohesiveness of $a b$. It then follows from Theorem 7 that ab is an arc.

Example. Let X be the set of all points (x, y) in the plane such that $0<x \leqslant 2 \pi$ and $y=\sin 1 / x$ together with the point (0,0) . In its subspace topology X is dendritic and 1 -cohesive but is not 2 -cohesive, and X is an interval of itself but is not an arc.

Theorem 10. If. X ia dendritic, arcwise connected, and 1 -cohesive, then X is locally connected.

Proof. Suppose X is not connected im kleinen at the point \uparrow. Then there is an open set \mathbb{L} containing \uparrow such that for each open set V containing \nsim and lying in U there is a point x of V such that no connected set containing both \uparrow and \approx lies in \mathcal{H}. Hence there exists an indexed set $M=\left\{z_{\alpha} \mid \propto \in \mathbb{A}\right\}$ of points of $\mathcal{U}-\{\neq\}$ such that \uparrow is a limit point of M and for each \propto in A the arc $p z_{\infty}$ intersects $x-u$. For each \propto let x_{α} be the first point of ∂U on $p x_{\infty}$, let $y_{\alpha} \in X-\Psi$ such that $x_{\alpha} y_{\alpha} x_{\alpha}$ and let C_{α} be the component of $X-\left\{x_{\alpha}\right\}$ containing x_{α}. Now for each α, x_{α} separates \neq from z_{α} : so that $C_{\alpha} \cap p x_{\alpha}=\varnothing$. Hence if $x_{\alpha} \neq x_{\beta}$ and $C_{\alpha} \cap C_{\beta} \neq \varnothing$, then $p x_{\alpha} \cup p x_{\beta}$ and $C_{\alpha} \cup C_{\beta}$ are two connected sets with intersection $\left\{x_{\alpha}, \alpha_{\beta}\right\}$ and therefore no point of X separates x_{α} from x_{β}. It follows that for each α and β in A either $C_{\alpha}=C_{\beta}$ or $C_{\alpha} \cap C_{\beta}=\varnothing$. Since X is 1 -cohesive, there is a net $\left\{\partial C_{m}, n \in D\right\}$ of elements of $\left\{\partial C_{\alpha} \mid \propto \in \mathbb{A}\right\}$ with a point q in its lim sup. Hence some subnet $\left\{C_{n_{i}}, i \in E\right\}$ of $\left\{C_{m}, m \in D\right\}$ has
both \uparrow and q in its lim inf, and $p \neq q$ since れモU and $q \in X-U$. It follows that no point of X separates \neq from q. Therefore X is connected im kleinen at each of its points and hence is locally connected.

Theorem 11. In order that the dendritic space X be locally connected, it is necessary and sufficient that it be 2 -cohesive.

Proof. Theorem 11 follows from Theorems 3, 9, and 10.
Theorem 12. If the dendritic space X is 2 -cohesive, then for each finite m, X is m-cohesive.

Proof. Theorem 12 follows from Theorems 3 and 11.
It follows from Theorems 9 and 11 that every locally connected dendritic space is arcwise connected, a result which is already known from Whyburn's extension of his cyclic element theory to non-metric spaces in [3] and which is mentioned by Proizvolov [2] and attributed to Gurin [1]. In connection with Theorem 11 we note that Gurin [1] proved that in order that a dendritic space be locally connected it is sufficient that if be locally peripherally compact. The condition is not, however, necessary.

References
[1] G.I. GURIN: On tree-like spaces, Vestnik Moskov.Univ. Ser.I Mat.Meh.(1969),9-12.
[2] V.V. PROIZVOLOV: Peripherally bicompact tree-like spaces, Dokl.Akad.Nauk SSSR 189(1969),724-727.
[3] G.T. WHYBURN: Cut points in general topological spaces, Proc.Nat.Acad.Sci.USA 61(1968),380-387.

University of Missouri
Kansas City
Missouri, U.S.A.
(Oblatum 5.2.1974)

