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0oraffieirtsiione«--'- Mth«s@tieae- ' t Jn iTers i ta t iS ' 'Carolina® 

15,2 (1972) . 

0OTPEETELI ADDITIVE DISJOINT STSTM OF BAIBE SETS IS OF 

BOUNDED GLASS 

David PBEISS, Praha 

Abstract* j j i e theorem i n the t i t l e i s proved; t h i s 
r « « t i i t c o r r e c t s ' t h e proof of Lemma 2 i n [F3, and thus ma~ 
k e s ^ w H ' d e « p " r » « u l t s i n [F3 ve r i f i ed* 

...SSSKaMgfT'"Completely a d d i t i v e systems, Ba i re c l a a s i -
f icwiiow* b-P tie) ta» 

IMS: Primary 28A05 Ref, 2. 7*518,11 
secondary 26A21 

1. Frolik [F3 claimed to prove several deep results 

ô '̂ ctwBpleieiy metrizable spaces concerning Baire measurab-

le-:mmpw and maps of bounded class. His proofs are based on 

He**sel*'s lemma (see [F3) and on its converse (see Lemma 2 

[F f p.1403) which gives a characterization of disjoint 

Baire completely additive systems* But the proof of Lemma 2 

in [F3 does not seem to be correct, (Why should the sets X ^ 

be closed in., X' ?-U To give a correct proof of this lemma 

it* would be sufficient to answer positively the following 

creation. IX. iX^ [ a e A J ia a disjoint family in an ab-

aolaie Souslin space such that the union ©f each subfamily 

•'0_C--. -CXaJ is a Baire aet,. ia.it true that .the. family 

:LX^} ranges in some Baire class? 

In this note we prqvt that tbe answer is yes even in 
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more general se t t ing* In spi te of what was said before i t 

would follow tha t the theorems in F hold. 

2. Let, X be any s a t and let-, fi>o be ^ y family 

of subsets of X . Let & = 4 Hh^ \ <-c < o>^ } be def i 

ned -mm follows: 

&oc, i£ the collection of a l l countable unions or 

i n t e r sec t ions of elements of {J i &~ \ p> < cc J according 

to a s cc i* odd or even. 

For B e © put clasa B s /wî v -f c& | B 6 ^ } . 

As an example we can have -X a topological (or uni

form*) space and SQ the family of zero sets* 

0etr* .result can be expressed now as follows. 

theorem. Let A X ^ J a, e A } be a d i s jo in t family 

of • subsets of X . I f the union, of each subfamily of iX^} 

belongs to 53 then the family iX&J ranges in some 33^ 

3. A l imi t ordinal number e i s called regular i f 

amy co-f ina l subset of T.- la of the type £* -

Lemma» Let e be a regular ordinal number* Let A 

be any* set- and <p a map of exfu A into T e • Suppose 

t h a t there i s a map i£ : T e x T e — > T e such t h a t : 

<p(A^ n A2) £ nt(<p (A^), g (Az)) . 

Then there i s an oo < e sach t h a t g>fo<) 6 oc far any 

a, e A • 

Proof» Suppose that the family 1 y(cu)\ a, e A } i s 
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not bounded by any, oo <z «, ., By induction we can, for any 

« & < : & . , diaaa.e-.-an. o ^ e A SJICIL t h a t 

(If O/^ have been defined for oo -< oc0 < a> , then 

juwfi> i<p ( a ^ ) ) cc -< oc0 ? < e since e i s regular*) 

Using the correspondence between cc and a/^ we see that 

we only have to find a contradiction in case A = T e and 

<f Coo) 2 oc for any cc < e . 

Let K0 be the set . of a l l limit ordinals <c £, and 

l e t Unr be the set of a l l l imit members of. D KA in 

i t s e l f ( cc «-- e ) . ?or any c c < e *yie aet O Xyj i s 

a closed subset .of T e • By induction we easi ly show that 

t h i s set i s also co-final- (If th i s holds for any oc < cc0< e 

then, for given qf *z & , put. ## -mumsCKp n (T€\TX)).Sin

ce- the s e t {#*£ | /3 «< ot0 | l a not co-final,., .we. ha_ve 

Mow/ rchanae oc^ e A X y \ .K^ such that 

(We -« t ^ Q 0 Kg. - T e . ? 

(Bre exis-t«nce.af oc^ fallawa from the co-finality of the 

•eta n K,\K. . ) 

Since g? ̂ p ^ 9 C * «*r'l T < «- ? ̂
 (^0j Kr N' K/a ) ) = 

we obtain the contradiction puttin* /3= «? ̂ *-.I T * & ^ • 
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Itemarlc. The preceding lemma holds for a rb i t ra ry or-* 

d i ^ l numbers i f we suppose that. % i s monotone ( i . e . 

0l(vc,fi) £ %Ccc', ft') i£..oc £ vc' and. ft--£ ft' 1* For 

non-limit ordinals the proof i s obvious. To prove i t fpr 

a l imit ordinal £, one finds. a eg-final aabafi±. T of 

Tg of the smallest possible type and defines <p (3) =s 

* mvjn>\ y € T \y>(3)& v ? and. \ Coc, ft ) s <m* i y e T ) 

^ Coc ,/3) £ v } fox . c c , | 3 e T « llalng. Theorem 2 (whe-

l»e„ T e i s replaced ^ T ) one obtains the p^oof. 

F.fdof of the Th^oirem. Put, for B c A , 9 CB) » 

.» c4a6*( ^ X a ) « Using the lemma fox e « 6>f tput 

2̂ <oC , ft) -=. muzĵ  (<x,J-0 + A ) "we obtain that the family 

i<$(a,)\ a, e Al is~boanded, i . e . < X ^ | a € A f ranges 

in some 33^ 

It e f e r e *i c e 

CF] .rao^fe 8V* Bi>irs set* and uniformities on complete 
mertri c spa ces, ©omment • Math. Univ • Carolina a 13 
mm), 137-147. 
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(Oblatnm 2.5.1974) 
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