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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

16,1 (1975) 

A NOTE ON SUBQUASIVARIETIES OF SOME VARIETIES OF LATTICES 

Vaclav SLAVfK, Praha 

Abstract: This paper is concerned with varieties of 
lattices, all subquasivarieties of which are varieties. 

Key words: Lattice, variety, quasivariety, primitive 
lattice. 

AMS: 06A20 Ref. 2.: 2.724.8 

V.I. IgoSin has shown in II] that the variety of latti

ces defined by the inclusion a A (b V (C A d)) A (C V d) & 

£ b v ( a A c ) v ( a A d ) has no subquasivariety which is 

not a variety. We shall give also some examples of such va

rieties of lattices. 

Given a lattice L , we denote by JM (L) the class 

of all lattices that contain no sublattice isomorphic to L • 

Let K be a class of lattices. A lattice L c K is cal

led weakly K -projective iff L can be embedded in any 

lattice in K that has a homomorphic image isomorphic to 

L . A lattice is said to be primitive ( K -primitive.K -

is a variety of lattices) if the class K (L) ( Itf (L) C\ K ) 

is a variety. It is easily verified that a non-trivial sub-

directly irreducible lattice L is X -primitive if and 

only if L is weakly K -projective . 
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Theorem 1. Let JC be a variety of lattices. The fol

lowing conditions are equivalent. 

(1) Any subquasivariety of K. is a variety. 

(2) Any non-trivial subdirectly irreducible lattice in JC 

is JC -primitive. 

(3) Any subdirectly irreducible lattice in JC is weakly 

JC -primitive. 

Proof. Assume (1) and let L be a non-trivial subdi

rectly irreducible lattice. The class M (L) O K is a 

subquasivariety of K end so by (1), it is a variety, i.e. 

the condition (2) holds. Evidently, (2) is equivalent to 

(3). Now suppose (3) and let A be a subquasivariety of 

JC and let B be the variety generated by A • We shall 

show A s J9 • Since any lattice in B is isomorphic to 

a subdirect product of subdirectly irreducible latticed from 

B and A is closed under the formation of products and 

sublattices, it suffices to prove that all subdirectly irre

ducible lattices of B belong to A • Let L € B be 

subdirectly irreducible. There exists a homomorphism of a 

lattice M c A onto L and by (3) M contains a sublat-

tice isomorphic to L . Since A is closed under sublatti

ces, we have L € A , and this is what we were required 

to prove. 

A class K of lattices is called locally finite if 

any finite subset of any lattice in JC generates a finite 

sublattice. If A is a »*t of lattices such that for any 

positive integer n there exists a positive integer g? (n) 
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such that any n elements of any lattice in A generate 

a sublattice of cardinality <& <f (n) , then A generates 

a locally finite variety (see C53). Given a class of latti

ces K we shall denote by Pin ( K ) the class of all fi

nite lattices of K • 

Theorem 2. Let K be a locally finite variety of lat

tices. The following conditions are equivalent. 

(1) Any subquasivariety of K is a variety. 

(2) Any non-trivial finite subdirectly irreducible lattice 

in K is K -primitive. 

(3) Any finite subdirectly irreducible lattice in K is 

weakly K -projective. 

(4) Any finite subdirectly irreducible lattice in K is 

weakly Fin ( K )-projective. 

Proof. It suffices to prove that (4) implies (3). Assu

me (4) and let A be a subquasivariety of K . Denote by 

B the subvariety of K generated by A • Suppose 

A % B • Then there exists a finitely generated latti

ce L € B such that L ^ A . Since K is locally 

finite, L is finite. The lattice L is a homomorphic image 

of a lattice M e A .We can assume that M is finitely 

generated and since M c K , we see that M is finite. 

L is isomorphic to a subdirect product of finite subdirect

ly irreducible lattices Au c B ( L c I ) . So we get 

that any AL ( t, 6 I) is a homomorphic image of M and by 

(4) M contains sublattices isomorphic to A^ ( u 6 I) . 
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The class A is closed under the formation of sublattices 

and products and thus we get that all A^ ( u e I) are in 

A and so L is also in A 5 a contradiction. 

Let L be a lattice. Define a lattice L* in this way: 

L is a sublattice of L* , L* S L contains exactly three 

elements a, u, v ; v is the smallest element of L* , u 

is the greatest element of L* and a is comparable with no 

element of L • Given a finite lattice L we denote by L° 

a lattice which is obtained from L by adding exactly one 

element comparable only with the greatest and the smallest 

element of L • 

Let K be a class of lattices. A lattice L e K will be 

called semi K -projective if the following condition holds: 

whenever y is a homomorphism of A e K onto L then 

there exists a homomorphism f of L into A such that 

Gp * if (x) = x for all x e L , i.e. cp © if = idL . 

Lemma 1. Let K be a class of lattices and let L c 

c K and L* e K . If L is weakly K -projective, 

then L* is weakly K -projective. If L is semi K -

projective, then L* is also semi K -projective. 

Proof. Let 5? be a homomorphism of a lattice A c K 

onto L* . Let a e L* be aomparable with no element of 

L and denote by b the smallest and by c the greatest ele

ment of L . There exist a*, b', c'e A such that y(a') = 

= a , gp (b') = b , tp(c') = c • Put v' = b'v a' , c" = 

= (C'A V ' ) V b' , u' = cMA a' and bM = b'v u' • One 

can easily show that u'< b" < cw < v' , cM A a' = u' , 
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b" v a ' = v ' and gp(cH) = c , 9? (b") = b . Since the i n 

terval I s { x 6 A ; b w ^ x 6 c " } i s mapped by g> onto 

L , we have that i t contains a s u b l a t t i c e L# isomorphic 

to L . I t i s easy to ver i fy that the s e t L ' u «{ a ' , u ' , v'f 

forms a s u b l a t t i c e of A isomorphic to L* . I f L i s s e 

mi K - p r o j e c t i v e , then there e x i s t s a homomorphism ip of 

L into I such that <f » i|f = id L . Let u and v be 

the greates t and the smallest element of L* • Define a 

mapping If of L* into I by ij? (x) * if (x) for a l l x e 

6 L , ijr (u) = u# , if (v) » v ' and y (a) = a ' . One can 

eas i l y show that y i s a homomorphism of L* into I such 

that cp » y = id L * . 

Lemma 2 . Let IK. be a c l a s s of f i n i t e l a t t i c e s and 

l e t L be a semi JC - p r o j e c t i v e l a t t i c e . If L° i s in 

K > then L i s a l so semi St - p r o j e c t i v e . 

Proof. Let Cp be a homomorphism of a l a t t i c e A € X 

onto L° . Let u be the greates t and v the smal les t e l e 

ment of L . Denote by u the smal lest element of A that 

i s mapped by cp onto u and by v the grea te s t element 

of A that i s mapped by y onto v . Let b be an element 

in A such that <p (b) = a c L° \ L . The in terva l I = 

= - { x c A ; v 0 = r x 6 u 0 | i s mapped by cp onto L and thus 

there e x i s t s a homomorphism y of L into I such that 

9 ° T = i d L * ^fine b ' = (b v vQ) A uQ . Evidently 

gp Cb') = a . I t i s easy to show that a mapping op of L° 

into I defined by ijr (x) = if (x) for a l l x e L and 

Y (a) = b* i s a homocorphism of L° into I 9uch that 

? ° ? = idLo . 
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The class of all lattices will be denoted by L and 

the class of all finite lattices will be denoted by Fin(L )• 

For any positive integer n 2 3 we shall denote by M the 

lattice of dimension 2 and cardinality n + 2 • 

Corollary !• The lattices ^ are semi Fin(!L )-projec

tive. 

Proof. For any positive integer n 2: 3 the lattice Mn 

can be obtained in a finite number of steps from the three 

element chain by application of o • 

Lemma 3. Let K be a locally finite variety of latti

ces generated by a class A of lattices* If L c K is a 

finite subdirectly irreducible lattice, then L is a homo-

morphic image of a sublattice of a lattice B c A • 

Proof* By L33 L is a homomorphic image of a sublat

tice C of an ultraproduct of lattices from A .We can 

suppose that C is finitely generated and since X is lo

cally finite, we have that C is finite. The class IK CO 

is closed under the formation of ultraproducts and thus the

re exists a lattice B € A that contains a sublattice iso

morphic to C • 

Theorem 3. Let A be a class of lattices such that 

the following conditions hold: 

(1) The variety V generated by A is locally finite. 

(2) Any finite subdirectly irreducible lattice which is a 

homomorphic image of a sublattice of a lattice from A is 

weakly Fin(V )-projective. 
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Then any subquasivariety of Y is a variety. 

Proof. If L is a finite subdirectly irreducible lat

tice of V » then by Lemma 3 there exists a lattice B e A 

such that L is a homomorphic image of a sublattice of B • 

By (2) L is Fin( V )-projective. Now, Theorem 3 follows 

from Theorem 2. 

Corollary 2. Let M be a finite set of semi 

Fin ( L )-projective lattices and let any subdirectly irre

ducible lattice which is a homomorphic image of a sublattice 

of a lattice from M be aemi Fin ( L )-projective. Let 

K be the set of all lattices which can be obtained from 

a lattice of M in a finite number of steps by applica

tions of # and * • Then any subquasivariety of the vari

ety V generated by M ia a variety. 

Proof. One can easily show that the conditions (1) and 

(2) hold. 

Corollary 3. Let W be the class of all lattices that 

can be obtained in a finite number of steps atarting from a 

lattice L.£ (i = 1,2,... ,7) in Fig. 1 by applicationa * 

and o . Then all aubquasivarietiea of the variety Y ge

nerated by M are varieties. 

Proof. The lattices L-̂  - Lg are primitive (see [2J ) 

and so they are sublattices of the free lattice and thua 

Ln - Lj. are projective (aee [61) • The lattice L-, » M-> is 

semi Fin ( ]L )-projective by Corollary 1. Now one can ea-

aily 9how that the conditions (1) and (2) of Theorem 3 hold. 
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Corollary 4* (IgoSin HI .) All subquasivarieties of 

the variety ¥ 0 of lattices defined by the inclusion 

a A ( b v (c A d)) A (cvd)i b v ( a A c)v (a^ d* 

are varieties. 

Proof* V 0 is generated by the set of lattices 

-(IŜ  ; 3 4s n < w ? (see [4]) and thus we have that Y 0 is 

a subvariety of the variety V in Corollary 3. 

Figure 1 
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