Commentationes Mathematicae Universitatis Caroline

Václav Benda; Kamila Bendová
 Recognizable filters and ideals

Commentationes Mathematicae Universitatis Carolinae, Vol. 17 (1976), No. 2, 251--259
Persistent URL: http://dml.cz/dmlcz/105691

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,2 (1976)

RECOGNIZABLE FIITERS AND IDEALS
Václav benida, Kamila bendova, Praha

Abstract

Necessary and sufficient conditions are obtained for filt ers, ultrafilters, and ideals over a free monoid to be recognizable by finite branching automata.

Key-words: Filt er, ultrafilter, ideal, formal language, recognizable family of languages, finite branching automaton.

AMS: 02F10, 02 J 05 Ref. Ž.: 2.724

Recognizable families of formal langugges were introduced and studied in connection with formalization of certain aspects of state-space problem solving by means of finite branching automata (see [1]). In that formalism languages (sets of strings over a finite alphabet Σ) represent plans of behaviour incorporating branching. In an earlier paper [2] we obtained a series of results concerning recognizable families of languages as well as their interesting subclass, the well-recognizable families (recognizable families with recognizable complements).

In the present paper we focus on a particular problem concerning the relationship between recognizable families of languages on one hand and filters and ideals over the free monoid Σ^{*} on the other hand. The concept of a filter, and
its dual notion of an ideal, are important in various areas of mathematics: filters over Σ^{*} were discussed in [3] especially in connection with concatenation of families.

Here we shall obtain necessary and sufficient conditioms for filters and ideals over Σ^{*} to be recognizable. We shall also show that a recognizable filter is well-recognizable iff it is an ultrafilt er. Thus concepts approached from completely different directions appear surprisingly interrelated.

In the present context an alphabet Σ is an arbitraxy finite non-empty set of objects called letters (usually denoted $a, b, c . .$.$) . We denote by \Sigma^{*}$ the set of all finite sequences of letters (the free monoid generated by \sum^{*} under concatenation). The elements of Σ^{*} are called strings end usually denoted $u, \nabla, w \ldots$ The unit element in Σ^{*} is the empty string $\Lambda \in \Sigma^{*}$. We denote $\Sigma_{\Lambda}=\Sigma u\{\Lambda\}$. For $u \in \Sigma^{*}, \operatorname{Ig}(u)$ denotes the length of u (the number of oceurrences of letters in u). In particular, $\lg (\Lambda)=0$. For $\mathbf{u}, \boldsymbol{\nabla} \in \boldsymbol{\Sigma}^{*}, \mathbf{u} \leqslant \boldsymbol{v} \equiv$ $\equiv\left(\exists \sum^{*}\right)(u w=\nabla)$. $\mathcal{P}\left(\Sigma^{*}\right)$ is the set of all subsets of $\Sigma^{*}, \mathscr{L}(\Sigma)$ is the set of all non-empty subsets of Σ^{*}, elements of $\mathscr{A}(\Sigma)$ are called languages (usually denoted L). Any $X \subseteq \mathscr{L}(\Sigma)$ will be called a family of languages (over Σ). Note that we admit empty family of languages but not families with empty element. We shall use the usual set-theoretical operations, union (u), intersection (\cap) and complement ($\bar{X}=$ $\left.=\left\{L_{;} L \in \mathscr{L}(\Sigma) \& L \notin X\right\}\right)$: For $u \in \Sigma^{*}$ and $I \in \mathscr{L}(\Sigma)$ we define:

1) the derivative of I with respect to u

$$
\partial_{u} \mathrm{I}=\left\{\boldsymbol{v} ; \mathbf{v} \in \Sigma^{*} \& u \boldsymbol{u} \in \mathbb{I}\right\} ;
$$

2) the prefix cloaure of L

$$
\operatorname{Pref}(L)=\left\{u_{i}(\exists \nabla \in L)(u \leqslant \nabla)\right\} ;
$$

3) the set of first letters of L

Fst (L) $=$ Pref (L) $\cap \Sigma$;

4) $\operatorname{Fst}_{\Lambda}(L)=\operatorname{Pref}^{\prime}(L) \cap \Sigma_{\Lambda}$.

Definition 1. The derivative of a family X with respect to u is the family

$$
\partial_{u} X=\left\{\partial_{u} L ; L \in X\right\}-\{\varnothing\} .
$$

We denote $D(X)=\left\{\partial_{u} X_{;} u \in \Sigma *\right\}$ and we say that X is $f i-$ nitely derivable if $D(X)$ is finite.

Definition 2. C-closure of a family X is the family $C(X)=\left\{L_{;}\left(\forall u \in \Sigma^{*}\right)\left(\exists I_{u} \in X\right)\left[\operatorname{Fat}_{\mathcal{A}}\left(\partial_{u} L\right)=\right.\right.$
$\left.\left.=\operatorname{Fst}_{\mathcal{\Lambda}}\left(\partial_{u} I_{u}\right)\right]\right\}$.
We say that a family X is self-compatible if $C(X)=X$.
Recognizable families of languages were originaly defined in terms of finite branching automata (hence the attribute "recognizable"). Here we shall need only their structural characterization (see (11), which we shall use, therefore, as a definition.

Definition 3. A family X is recognizable if X is selfcompatible and finitely derivable.

Let us note that, as it is known from classical automata theory, a language L is regular (i.e. recognizable by a classical finite automaton) iff the set $\left\{\partial_{u} L ; u \in \Sigma *\right\}$ is finite. The reader unfamiliar with the automata theory may
consider this fact as a definition of a regular language． （Note that in the classical antomata theory \varnothing is also a regu－ lar language．）

For the definition and basic properties of filters，see e．g．［4］IV，8，p．193－196．

Definition 4．A filter F over Σ^{*} is a non－empty sub－ set of $\mathfrak{J}\left(\Sigma^{*}\right)$ satisfying：
1）$\phi \& F$ ；
2）if $A, B \in F$ then $A \cap B \in F ;$
3）if $A \in F$ and $A \subseteq B$ then $B \in F$ ．
In this paper we assume Σ to be a fixed alphabet and shall call filters over \sum^{*} simply filters．

Since $\varnothing 申 F$ every filter is a subset of $\mathscr{L}(\Sigma)$ and we can look at it as a family of la rguages．For any $I \in \mathscr{L}(\Sigma)$ the family $\left\{L^{\prime} ; L \subseteq L^{\prime}\right\}$ is clearly a filter over Σ^{*} ．Over an infinite set there exist also filters of other types（here e．g．family of all languages with finite complements）．

Definition 5．A filter of the type $\left\{I^{\prime} ; L \subseteq L^{\prime}\right\}$ is cal－ led principal and will be written F_{L} ．

It is easy to show that a filter F is principal iff へfer．
fefinition 6．A filter F is called an ultrafilter if \mathbf{F} is a maximal filter，i．e．there exists no filter F^{\prime} such that F 年 F^{\prime} 。

Again it is easy to show that a principal filter over \sum^{*} is an ultrafilter iff it is of the form $\mathrm{F}_{\text {fu\} }}$ for some $u \in \Sigma^{*}$ ．

Definition 7．A filter X is a recognizable（well－recog－
nizable) filter if the family X is recognizable (well-recognizable). Analogically we define a recognizable, resp. well-recognizable ultrafilter.

Theorem 8. A filter over Σ^{*} is recognizable iff it is a principal filter of the form F_{I} where L is a regular language.

Proof. First we show that every principal filter is self-compatible.

Let $L^{\prime} \in C\left(F_{L}\right)$, for the sake of contradiction we shall assume that $L^{\prime \prime} \not F_{L}, i . e$. there exists $u \in I$ such that $u \notin I^{\prime}$. By the definition of C-closure there must exist $I_{u} \in F_{L}$ such that particularly $\Lambda \in F s t_{\Lambda}\left(\partial_{u} L^{\prime}\right) \equiv \Lambda \in F s t_{\Lambda}\left(\partial_{u} I_{u}\right)$ and thus $u \in L^{*} \equiv u \in I_{u}$. But $u \in I_{u}$ because $L \subseteq I_{u}$ and thus also $u \in L^{\circ}$, which contradicts the assumption. Furthermore, for any $\in \Sigma^{*} *$,

$$
\partial_{u} F_{I}=\partial_{u}\left\{I^{\prime} ; L \subseteq L^{\prime}\right\}=\left\{L^{m} ; \partial_{u} L \subseteq L^{n}\right\}
$$

Thus $\partial_{u} F_{L}=\partial_{V} F_{I} \equiv \partial_{u} I=\partial_{\nabla} I_{\text {, }}$ i.e., F_{I} is a finitely derivable family iff L is a regular language. Now we have known that a principal filter F_{I} is recognizable iff I is a regular language. It remains to show that every recognizable filter F must be principal, i.e. that $\cap F \in$ \in F. Let F be a recognizable filter. First we show that if กFSI and L is a complete language then $L \in F$ (for the definition of a complete language see e.g. [5],p. 47). In our notation L is complete language iff $\left(\forall u \in \sum^{*}\right)\left(\sum \subseteq\right.$ \subseteq Fst $_{\Lambda}\left(\partial_{u} L\right)$. For $u \in I$,

$$
\operatorname{Fst}_{\Lambda}\left(\partial_{u} L ;=\Sigma_{\Lambda}=\operatorname{Fst}_{\Lambda}\left(\partial_{u} \Sigma *\right)\right.
$$

and for $u \notin L$,

$$
\operatorname{Fst}_{\Lambda}\left(\partial_{u} L\right)=\Sigma=\operatorname{Fst}_{\Lambda}\left(\partial_{u}(\Sigma *-\{u\})\right) .
$$

But necessarity $\Sigma^{*} \in F(F$ is non-empty) and if $u \notin L$ then by the assumption $u \notin \cap F$, i.e. there exists $L^{\prime} \in F$ such that $u \notin L^{\prime}$ and since $L^{\prime} \subseteq \Sigma^{*}-\{u\}$ then by the property 3) of filter also $\Sigma^{*}-\{u\} \in F$. Therefore $L \in C(F)$ and thus L®F by the assumption about recognizability of F. Now it is easy to choose arbitrary two complete languages I_{1} and I_{2} for which $I_{1} \cap I_{2}=\cap$ F.
We have shown that $I_{1} \in F$ and $L_{2} \in F$ and thus also $I_{1} \cap I_{2}=$ $=$ (PeF (property 2)).

Theorem 9. A principal filter of the form F_{L} is wellrecognizable iff it is an ultrafilter.

Proof. We have stated (cf. [4],p. 196) that principal filter is an ult rafilter iff it is of the form $\mathcal{F}_{\{u\}}$ for $u \in$ $\in \mathbb{\Sigma}^{*}$. By the preceding theorem $\mathbb{F}_{\{u\}}$ is recognizable. Clearly for every $\nabla \in \Sigma *$ such that $\lg (\nabla)>\lg (u), \partial_{\nabla} \overline{F_{\{u\}}}=$ $=\mathscr{L}(\Sigma)$. Thus $\overline{F_{\{u\}}}$ is finitely derivable and furthermore $C\left(\overline{F_{\{u\}}}\right)=\overline{F_{\{u\}}}$ because for every $L \in F_{\{u\}}, \Lambda \in F_{s t}\left(\partial_{u} L\right)$, while for any $L^{\prime} \in \overline{F_{\{u\}}}, ~ \Lambda \notin F_{\Lambda s t}\left(a_{u}{ }^{I}\right)$. Thus also $\overline{F_{\{u\}}}$ is recognizable and so $F_{\{u\}}$ is a well-recognizable family.

Now let us assume, for contradiction, that F_{L} is not an ultrafilter, i.e. there exists $\nabla, w \in L$ such that $w \neq \nabla$. Thus by the definition of F_{I} we have $\Sigma^{*}-\{\nabla\} \in \bar{F}_{\mathrm{L}}$ and Σ^{*} -$-\{w\} \in \bar{F}_{L}$. But for any $u \in \Sigma^{*}$ we have $u \neq \nabla \Longrightarrow$
$\Rightarrow \operatorname{Fst}_{\Lambda}\left(\partial_{u} \Sigma^{*}\right)=\Sigma_{\Lambda}=\operatorname{Fst}_{\Lambda}\left(\partial_{u}\left(\Sigma^{*}-\{\nabla\}\right)\right)$;
$u=v \Rightarrow \operatorname{Fst}_{\Lambda}\left(\partial_{u} \Sigma *\right)=\Sigma_{\Lambda}=\operatorname{Fst}_{\Lambda}\left(\partial_{u}\left(\Sigma^{*}-\{w\}\right)\right)$.

Thus $\Sigma^{*} \in C\left(\overline{F_{L}}\right)$ and since $\Sigma^{*} \notin \overline{F_{L}}$ we have $C\left(\overline{F_{L}}\right) \neq \overline{F_{L}}$ and so F_{L} is not a well-recognizable filter.
Q.e.d.

In the paper [2] we have shown that to every nontrivial wellrecognizable family X there exists exactly one string $u_{X} \in \Sigma^{*} *$ such that the families $\partial_{\nabla} X$ are trivial (i.e. \varnothing or $\left.\mathscr{L}\left(\Sigma^{1}\right)\right)$ for all $\nabla \neq u_{X}$ while they are nontrivial and mutually distinct for all $\nabla \leqslant u_{X}$. We have called u_{X} the characteristic string of a family X because it uniquely determines X regarding the algebraic decomposition of X to a finite number of basic families and regarding the (minimal) number of states of a branching automaton recognizing X. It can be easily seen that for an ultrafilter $F_{\{u\}}$, the string u satisfies the above conditions and thus $u_{F_{\{u\}}}=u$ (i.e. there exists finite branching automaton with ($1 g(u)+2$) states recognizing the family $F_{\{u\}}$ - cf. [2]).

The preceding theorems showed us an interesting relationship between recognizable families and filters, as well as between well-recognizable families and ultrafilters.

We shall now turn to a dual notion to that of a filter, namely the ideal. We obtain results analogical to those concerning filters. Our definition of an ideal is a slight modification of that from [6:], p. 132.

Definition 10. A non-empty set I of subsets of Σ^{*} is an ideal over $\Sigma *$ if

1) $\sum_{1}^{*} \neq I$;
2) if $A, B \in F$ then $A \cup B \in I$;
3) if $A \in I$ and $B E A$ then $B \in I$.

Aga in we shall call ideals over Σ^{*} simply ideals.
We want to talk about recognizable ideals. However, since always $\emptyset \in I$ no ideal is a "family" in our sense. We shall therefore ise the following definition.

Definition 11. We say that an ideal I is a recognizable ideal if $I-\{\varnothing\}$ is a recognizable family of languages.
Similarly as in the case of principal filters we have again principal ideals of the form $I_{A}=\{B ; B \subseteq A\}$, where $\mathbb{A} \subseteq \mathbb{S}^{*}$. An ideal is principal iff $U I \in I$.

Theorem 12 - An ideal I is recognizable iff it is a principal ideal of the form I_{A}, where A is a regular language (possibly empty), $A \neq \Sigma^{*}$.

Proof. If $A=\varnothing, I_{A}-\{\varnothing\}=\varnothing$ is a trivial recognizable family. If $A=L \in \mathscr{L}(\Sigma)$, then in the same way as in Theorem 8 one can show that $I_{L}-\{\emptyset\}$ is self-compatible, as well as that it is finitely derivable iff L is finitely derivable.

It suffices to show that a recognizable ideal is principal, i.e. that UIEI.

If $U I=\varnothing$ then $I=I_{\varnothing}$ is principal.
Otherwise we put $\cup I=L$ and show that L is in the $C-$ closure of $I-\{\emptyset\}$. Since for every $L^{\circ} \in I, L^{\circ} \subseteq L$ and since an ideal is closed under finite union, for every $u \in \Sigma^{*}$ there surely exists $L_{u} \in I$ satisfying the conditions:
a) $\left(\forall \nabla \in \Sigma^{*}\right)[\lg (\nabla)=\lg (u)+1 \Longrightarrow(\nabla \in \operatorname{Pref}(L) \equiv \nabla \in$ $\left.\left.\in \operatorname{Pref}\left(L_{u}\right)\right)\right]$;
b) $u \in L \equiv u \in I_{u}$.

However, then $\operatorname{Fst}_{\mathcal{\Lambda}}\left(\partial_{u^{L}}\right)=\operatorname{Fst}_{\mathcal{A}}\left(\partial_{u} \mathrm{I}_{\mathbf{u}}\right)$. Thus $L \in C(I-$ $-\{\varnothing\})=I-\{\varnothing\}$, i.e. I is a principal ideal.
Q.e.a.

References

[I] havel I.M.: Finite Branching Automata, Kybernetika 10 (1974), 281-302.
[2] benda V., bendovi K.: On Pamilies Recognizable by Finite Branching Automata (in preparation).
[3] KATE゙TOV M.: 0 základech matematického vyadřováni plánu, Mimeographed report, Faculty of Mathematics and Physics, Charles University, 1974.
[4] MALCEV A.I.: AlgebraiCeskije sistemy, Nauka, Moscow 1970.
[5] EIIENBERG S.: Automata, Languages and Machines, Vol.A, Academic Press, New York 1974.
[6] VOPENKA P., HíJEK P.: The Theory of Semisets, Academia, Prague and North-Holland, Amsterdam, 1972.

Vyzkumny ustav železniłnf
U lužicicého semináre 3
11000 Praha 1
Ceskoslovensko

Matematicky ustav ČSAV
Žitná 25
11567 Praha 1
Ceskoslovensko

