Commentationes Mathematicae Universitatis Caroline

Vladimír Müller
 Probabilistic reconstruction from subgraphs

Commentationes Mathematicae Universitatis Carolinae, Vol. 17 (1976), No. 4, 709--719

Persistent URL: http://dml.cz/dmlcz/105731

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

$$
17,4(1976)
$$

PROBABILISTIC RECONSTRUCTION FROM SUBGRAPHS
Vladimir MüLLER, Praha

Abstract: In particular, it is proved that Ulam conjecture is true with probability 1.

Key words: Finite undirected graphs, automorphisms of graphs, Ulam conjecture.

AMS: 0.5 CO 5 Ref. Ž.: 8.83

Introduction: It is proved that, given $E>0$, asymptotically the most graphs with n vertices have all its subgraphs with at least $\frac{n}{2}(1+\varepsilon)$ vertices asymmetric (see [l]) and mutually non-isomorphic. Particularly, from this follows that the Ulam's conjecture [4] is true with probability 1. The line analog of this result was proved in [2]. Moreover, the following stronger result holds: For every $\varepsilon>0$ there exists n_{0} such that for every $n>n_{0}$ the most graphs with n vertices can be uniquely reconstructed from its $\frac{m}{2}(I+\varepsilon)$-vertex subgraphs. On the other hand, V. Nydl (Prague, Charles University) exhibitěd in his thesis an example of two nonisomorphic graphs G, H with $2 n$ vertices with the same collection of ($n-1$)-vertex subgraphs.

We consider finite undirected graphs without loops
and multiple edges. The set of vertices and the set of edges of a graph G are denoted $V(G)$ and $E(G)$, respectively.

A bijection $f: V(G) \longrightarrow V(H)$ is called isomorphism from graph G to graph H if $\{x, y\} \in E(G) \Longrightarrow\{f(x), f(y)\} \in$ $\in E(H)$.

An isomorphism $f: G \longrightarrow G$ is called automorphism of G. In the usual sense, the term type of an automorphism is used.

A graph with n vertices will be shortly denoted n-graph. For natural numbers $p, k, n, p \geq 2, k p \leqslant n$, we shall denote $S_{k, p}(n)$ the number of all n-graphs having some automorphism of the type $(\underbrace{p, p, \ldots, p}_{k-\text { times }}, 1,1, \ldots, 1)$.

A graph having a non-trivial automorphism is called symmetric, a graph which is not symmetric is asymmetric. Further denote $S(n)$ the number of all symmetric n-graphs and $G(n)=2^{\binom{n}{2}}$ the number of all n-graphs.

Two statements are obvious:

1) $S(n) \leq \sum_{\substack{k \geq 1, n \geq 2 \\ k p \in m}} S_{k, p}(n)$
2) $S_{k, p}(n) \leq\binom{ n}{p}\binom{n-\uparrow 2}{p} \ldots\binom{n-k p+p)}{p} \frac{1}{k!} \cdot[(p-1)!]^{k}$.
 $k \geq 1, p \geq 2, k p \leq n$.

Let $p \geq 2,(1+1) p \leq n$. It is
$\frac{R_{k+1, p}(n)}{R_{k, p}(n)}=\frac{n-k p}{p(k+1)} \cdot(p-1)!\cdot 2^{-A}$, where
$A=n p-k p^{2}-n-\frac{n^{2}}{2}+k p$.
Lemma 1: Let $p \in N, p \geq 1$. Then $p l \leq 2^{\frac{p^{2}-1}{2}}$.
Proof: Lemma 1 can be easily proved by induction on p.
Lemma 2: Let $\mathrm{p} \geq 2, \mathrm{k} \geq 1, \mathrm{n}=(\mathrm{k}+1) \cdot \mathrm{p}$. Then $\frac{R_{R_{k+1,12}}(n)}{R_{k, \uparrow 2}(n)} \leq 1$.

Proof: It is $\frac{\mathrm{R}_{k+1,12}(n)}{R_{k, k_{2}}(n)}=\frac{1}{k+1} \cdot \frac{(n-1)!}{2^{\frac{k^{2}}{2}-k}} \leqslant \frac{1}{k+1} \leqslant 1$.
Remark: It holds for $p=2, k \geq 1, n=2(k+1)+1$

$$
\frac{R_{k+1, p}(n)}{R_{k, p}(n)}=\frac{3}{2(k+1)} \leqslant p
$$

Lemma 3: Let either $\mathrm{p} \geq 3, \mathrm{n} \geq(\mathrm{k}+1)$. p or $\mathrm{p}=2$, $n \geq 2 k+3$.

Then $\frac{R_{k+1, k}(n+1)}{R_{k, \uparrow}(n+1)} \leq \frac{R_{k+1, m}(n)}{R_{k, n}(m)}$.
Proof: It is $\frac{R_{k+1, n}(n+1)}{R_{k, p 2}(n+1)} \cdot \frac{R_{k, p_{2}}(n)}{R_{k+1, n}(n)}=\frac{m+1-k k_{2}}{n-k p-p+1} \cdot \frac{1}{2^{n-1}}$ If $p \geq 3, n \geq(k+1) \cdot p$ then $\frac{m+1-k p}{m-k \not p-p+1} \cdot \frac{1}{2^{p-1}} \leq \frac{p+1}{2^{k-1}} \leq 1$. If $\mathrm{p}=2, \mathrm{n} \geq 2 k+3$ then $\frac{n+1-k p}{m-k p-k+1} \cdot \frac{1}{2^{p-1}} \leqslant \frac{p+2}{2 \cdot 2^{k-1}}=1$.

Corollary: Let $p \geq 2, k \geq 1, n \geq(k+1)$.p. Then $\frac{B_{m+1, n}(n)}{R_{n, 1}(n)} \leqslant 1$.

Proof: Follows immediately from the previous lemmas.
Proposition 1: Let p, k, s, n be natural numbers, $p \geq 2$, $k \geq s \geq 1, n \geq k p$. Then $R_{k, p}(n) \leqslant R_{s, p}(n)$.

Putting $k=1$ in the definition of $R_{k, p}(n)$, we get $R_{1, p}(n)=\binom{n}{p}(p-1)!\cdot 2^{\left(m_{2}-\uparrow\right)} \cdot 2^{n-\uparrow} \cdot 2^{\frac{\mu_{2}}{k}}$ and $\frac{R_{1, n+1}(n)}{R_{1, p}(n)}=\frac{n-1}{p+1} \cdot p \cdot 2^{-m+p+\frac{1}{2}} \quad$ for $n \geq p+1$.

Lemma 4: Let p 2, $n=p+1$. Then $\frac{R_{1, \uparrow+1}(n)}{R_{1, \uparrow 2}(n)} \leqslant 1$.
Proof: It is $\frac{R_{1, p+1}(p+1)}{R_{1, p}(p+1)}=\frac{p}{p+1} \cdot \frac{1}{\sqrt{2}} \leq 1$.
Lemme 5: Let $\mathrm{p} 2, \mathrm{n} \mathrm{p}+1$. Then

$$
\frac{R_{1, n+1}(n+1)}{R_{1,12}(n+1)} \leq \frac{R_{1, n+1}(n)}{R_{1, \uparrow}(n)}
$$

Proof: It is $\frac{R_{1, n+1}(n+1)}{R_{1, n}(n+1)} \cdot \frac{R_{1, n}(n)}{R_{1, n+1}(n)}=\frac{n+1-\uparrow}{n-12} \cdot \frac{1}{2} \leqslant 1$.
Proposition 2: Let $p \geq q \geq 2, n \geq p$. Then $R_{1, p}(n) \leq$ $\leqslant R_{1, q}(n)$.

Proof: Follows easily from the lemmas 4, 5.
Using the propositions 1,2 , we get the following bound: $S(n) \leq \sum_{\substack{k=2 \\ k \neq 2 \leq n}} S_{k, p}(n) \leq \sum_{\substack{n \geq \geq 2 \\ k \neq 1}} R_{k, p}(n) \leq R_{1,2}(n)+$ $+\sum_{n=2}^{n} R_{k, 2}(n)+\sum_{\substack{t i m \\ n \neq 2}} R_{k, p}(n) \leqslant R_{1,2}(n)+n \cdot R_{2,2}(n)+$ $+n^{2} \cdot R_{1,3}(n)=\binom{n \not n \leq n}{2} 2^{\left(\begin{array}{c}n-2) \\ 2\end{array}\right.} \cdot 2^{n-2} \cdot 2+\frac{n}{2}\binom{n}{2}\binom{n-2}{2}$. $2^{(n-4)} 2^{2 n-8} \cdot 4 \cdot 4+n^{2}\binom{n}{3} \cdot 2 \cdot 2^{(n-3)} 2^{n-3} 2^{\frac{3}{2}} \leq$ $2 n^{2} \cdot 2^{\frac{n^{2}-3 m}{2}}+12 \cdot n^{5} 2^{\frac{m^{2}-5 m}{2}}$.

Remark: It is clear that the number of graphs with an automorphism of the type $(2,1, \ldots, 1)$ is bounded by the first term, the second term bounds the number of all other
symmetric graphs. Obviously the first term is greater than the second one for n sufficiently large.

Lemma 6: Let $n \in N, a<\frac{1}{n}$. Then $(1-a)^{n} \geq 1-n a$.
Proof: This is a well-known inequality. (It is also easy to prove by binomic development of ($1-a)^{n}$.)

Lemma 7: Iet $k \in N, k \geq 2$. Then $\frac{(k+1)^{k^{k+1}(k-1)^{k-1}}}{k^{2 k}}>1$.
Proof: It is $\frac{(k+1)^{k+1}(k-1)^{k-1}}{k^{2 k}}=\left(1+\frac{1}{k}\right)^{k+1}\left(1-\frac{1}{k}\right)^{k-1}=$ $=\left(1-\frac{1}{k^{2}}\right)^{k-1} \cdot\left(1+\frac{1}{k}\right)^{2} \geq\left(1-\frac{k-1}{k^{2}}\right) \cdot\left(1+\frac{2}{k}\right) \geq\left(1-\frac{1}{k}\right)\left(1+\frac{2}{k}\right) \geq 1$.

Lemma 8: Let $\varepsilon>0, r \in N$. Then
$\lim _{n \rightarrow \infty} n^{n}\binom{n}{\left[\frac{m}{2}(1-\varepsilon)\right]} \cdot 2^{-n}=0$.
Proof: It is enough to take $\varepsilon=\frac{1}{2}$ and to prove
$\lim \frac{n^{n}}{2^{n}} \cdot\left(\begin{array}{cc}2 k n^{\prime}+x \\ {\left[\frac{n}{2}\right.} & \left.\frac{f_{n}-1}{n}\right]\end{array}\right)=0 \quad$ for every $z=0,1, \ldots$
$\ldots, 2 k-1, n=2 n^{\prime}+2$. It is
$\left[\frac{n}{2} \cdot \frac{k-1}{k}\right]=n^{\prime}(k-1)+\left[\frac{x(k-1)}{2^{k}}\right]=n^{\prime}(k-1)+x^{\prime}$.
Denote $A_{n^{\prime}}=\left(2 \mathrm{k} n^{\prime}+z\right)^{x} \cdot\binom{2 \operatorname{se} n^{\prime}+x}{n^{\prime}(\operatorname{ke}-1)+x^{\prime}} \cdot 2^{-\left(2 \operatorname{se} n^{\prime}+z\right)}$
Let us count the limit $\lim _{n^{\prime} \rightarrow \infty} \frac{A_{n^{\prime}+1}}{A_{n^{\prime}}}=\lim _{n^{\prime} \rightarrow \infty} \frac{1}{2^{2 k}}$.
$\cdot \frac{\left(2 m^{\prime} k+2 k+x\right) \ldots\left(2 n^{\prime} k+x+1\right)}{\left(n^{\prime}(k-1)+x^{\prime}\right) \ldots\left(n^{\prime}(k-1)+x^{\prime}+k-1\right)\left(m^{\prime}(k+1)+x-x^{\prime}+1\right) \ldots\left(m^{\prime}(k+1)+x-x^{\prime}+k+1\right)}=$
$=\frac{1}{2^{2 k}} \frac{(2 k)^{2 k}}{(k-1)^{k-1}(k+1)^{k+1}}<1$,
by the lemma 7 and by the d'Alambert's convergence criterion there is $\lim _{m^{\prime} \rightarrow \infty} 4_{n^{\prime}}=0$.
This proves the lemma 8.
Notation: Let $G=\langle V(G), E(G)\rangle$ be a graph. Denote $s(G)=\min \{|M|, M \subset V(G)$ and $G|V(G)-M|$ is symmetric $\}$. (I.e. $s(G)$ is the minimal number of vertices of G, the deletimg of which makes the graph symmetric.)
For $r \leq n$ denote further $S^{r}(n)$ the number of all n-graphs G satisfying $s(G)=r$.

Theorem 1: Let $\varepsilon>0$. Then
$\lim \frac{1}{G(n)} \cdot \sum_{n=0}^{\left[\frac{n}{2}(1-\varepsilon)\right]} S^{n}(n)=0$.
(i.e. the most of graphs have all its subgraphs with at least $\frac{m}{2}(1+\varepsilon)$ vertices asymmetric).

Proof: Denote $S^{\prime r}(n)$ the number of all n-graphs $G=\langle V(G), E(G)\rangle$ which satisfies $s(G)=r$ and there exists a set $M \subset V(G),|M|=r$ such that the graph $\left.G\right|_{V(G)-M}$ has an automorphism of the type $(2,1, \ldots, 1)$. Denote $S^{n r}(n)=S^{r}(n)-S^{r r}(n)$. It holds
$S^{\prime r}(n) \leq\binom{ n}{r} 2(n-r)^{2} 2^{\frac{(n-r)^{2}-3(n-r)}{2}} 2^{\left(\frac{n}{2}\right)} 2^{r(n-r-1)}$.
The first two terms bound the number of ($n-r$)-graphs having an automorphism of the type $(2,1, \ldots, 1)$ and the last two terms bound the number of all possible completions to an n-graph. In the last exponent we use the fact that $s(G)$ is exactly equal to r and not $s(G)<r$.

$$
\begin{aligned}
& \text { Further it holds } \\
& S^{\prime \prime \mu}(n) \leqslant\binom{ n}{r} 12(n-r)^{5} 2^{\frac{(n-r)^{2}-5(n-r)}{2}} 2^{\binom{r}{2}} 2^{r(n-r)} .
\end{aligned}
$$

and $\frac{1}{G(n)} \sum_{\pi=0}^{\left[\frac{n}{2}(1-\varepsilon)\right]} S^{r}(n)=\frac{1}{G(n)} \sum_{n=0}^{\left[\frac{n}{2}(1-\varepsilon)\right]} S^{\prime n}(n)+\frac{1}{G(n)}{ }_{n=0}^{\left[\frac{n}{2}(1-\varepsilon)\right]} S^{1 n n}(n)$. We have $\frac{1}{G(n)} \sum_{x=0}^{\left[\frac{n}{2}(1-\varepsilon)\right]} S^{1 u n}(n) \leqslant 12 n^{5} \sum_{x=0}^{\left[\frac{n}{2}(1-\varepsilon)\right]} 2^{-n+2 \pi} \leq 12 n^{6} 2^{-n \varepsilon}$.

The last formula is $o(1)$. At the same time we have $\frac{1}{G(n)} \cdot\left[\sum_{n=0}^{\left[\frac{n}{2}(1-\varepsilon)\right]} S^{\prime n}(n) \leq 2 n^{2} \sum^{\left[\frac{n}{2}(1-\varepsilon)\right]}\binom{n}{n} \cdot 2^{-n} \leqslant 2 m^{3}\left(\left[\frac{n}{2}(1-\varepsilon)\right]\right) \cdot \overline{2}^{m} \rightarrow 0\right.$
for $n \rightarrow \infty$ (see the previous lemma 8).
This proves the theorem 1.
Theorem I cannot be improved as follows by the following proposition.

Proposition 3: Let $G=\langle V(G), E(G)\rangle$ be a graph, $|\nabla(G)|=n=2 k+1(k \in N)$. Then there exists a symmetric subgraph of G with at least $k+1$ vertices. If $n=2 k$ then there exists a symmetric subgraph of G with at least $k+1$ vertices.

Proof: Let $G=\langle\nabla(G), E(G)\rangle$ be a graph, $|\nabla(G)|=$ $=n=2 k+1$. For $x, y \in V(G)$ let us denote $d_{G}(x)=$ $=|\{z \in V(G),\{x, z\} \in E(G)\}|$ the degree of x in G, $d_{G}(x, y)=\mid\{z \in V(G),\{x, z\} \in E(G)$ and $\{y, z\} \in E(G)\} \mid$, $\bar{d}_{G}(x)=d_{K_{n}-G}(x), \bar{d}_{G}(x, y)=d_{K_{n}-G}(x, y)$. It holds $\sum_{x \in V(G)}\binom{d_{6}(x)}{2}+\sum_{x \in V(G)}\binom{d_{6}(x)}{2}=\sum_{\substack{x, y \in V(G) \\ x \neq y}} d_{6}(x, y) \cdot+\sum_{\substack{x, y \in \in(G) \\ x \neq y}} \bar{d}_{6}(x, y)$. As there is $d_{G}(x)+\bar{d}_{G}(x)=n-1$ for every $x \in V(G)$, it must be $\sum_{x \in V(G)}\left(d_{G}(x)\right)+\sum_{x \in V(G)}\left(d_{G}(x)\right) \geq 2 m\binom{\frac{n-1}{2}}{2}$ and there exist two points $x, y \in \nabla(G), x \neq y$ such that $d_{G}(x, y)+\bar{d}_{G}(x, y) \geq$ $\geq \frac{2 m\left(\frac{m-1}{2}\right)}{\binom{m}{2}}=\frac{m-3}{2}$.

It means that graph G has the symmetric subgraph with $\frac{m+1}{2}$ vertices induced by the set $\{x, y\} \cup\{z \in V(G)$, $\{z, x\} \in E(G)$ and $\{z, y\} \in E(G)\} \cup\{z \in V(G),\{z, x\} \in E(G)$ and $\{z, y\} \in E(G)\}$.

This subgraph has the non-trivial automorphism exchanging the points x and y.

Analogously, for n even there can be proved the existence of a symmetric subgraph with $\frac{\pi}{2}+I$ vertices.
Let $\varepsilon>0, r, n \in N, k=\left[\frac{m}{2}(1+E)\right], 2 k-n \leq r \leq$
$\leq k-1$. Denote by $K_{P}(n)$ the number of n-graphs G satisfying

1) there exist two different iscmorphic k-subgraphs of G having precisely r common vertices
2) all subgraphs of G with at least $\frac{m}{2}(1+\varepsilon)$ vertices are asymmetric.

Theorem 2: $\lim _{m \rightarrow \infty} \frac{\sum_{n=2 k-n}^{n-1} K_{n}(n)}{G(n)}=0$.
Proof: Put $K(n)=\sum_{n=2 k-n}^{k-1} \frac{K_{n}(n)}{G(n)} \quad$ and
$k^{\prime}=\left[\begin{array}{c}n \\ 2\end{array}\left(1+\frac{\varepsilon}{2}\right)\right] \quad$ (we write shortly k° instead of
$k^{\prime}(n)$ as well as k instead of $k(n)$). Obviously it is
$K(n)=K^{\prime}(n)+K^{n}(n)+K_{k-1}(n)$, where $K^{\prime}(n)=$
$=\sum_{n=2}^{n^{\prime}} \frac{K_{r-m}(n)}{G(n)}$ and $K^{\prime \prime}(n)=\sum_{\pi=k^{\prime}+1}^{k-2} \frac{K_{r}(n)}{G(n)}$.
We divide the proof into three cases:

$$
\begin{array}{r}
\text { I. Let } 2 k-n \leq r \leq k^{\prime} \text {. It holds (even for every r) } \\
K_{\pi}(m) \leq\binom{ m}{k}\binom{k}{r}\binom{m-k}{k-r} \cdot 2^{\binom{k}{2}} \cdot k!\cdot 2^{(n-2 k+r)} 2^{(2 k-k)(n-2 k+k)} 2^{(k-r)(k-r)}
\end{array}
$$

 $\frac{\bar{K}_{r+1}(n)}{\bar{K}_{r}(n)}=\frac{(\mu-r)^{2}}{(n+1)(m-2 \mu+r+1)} \cdot 2^{r} \geq \frac{1}{n^{2}} \cdot 2^{2 n-m} \geq \frac{1}{m^{2}} 2^{m \varepsilon-2}$, hence $\bar{K}_{n}(n) \leqslant \bar{X}_{\mathbf{k}},(n)$ for every sufficiently large n and for every r satisfying the conditions of the case I. Hence for sufficiently large n there is
$K^{\prime}(n) \leq m \bar{K}_{k^{\prime}}(n)=m \cdot \frac{\binom{n}{k}\left(\begin{array}{l}k \\ k_{k}^{\prime} \\ k^{\prime}\end{array}\right)\binom{n-k}{k-k^{\prime}}}{2^{\left(k_{2}\right)-\left(\frac{k}{2}\right)}} \leq$
$\leq \frac{m \cdot n!k!}{k^{\prime}!\left(k-k^{\prime}\right)!\left(m-2 k+k^{\prime}\right)!} \cdot \frac{1}{2^{m^{2}\left(\frac{k}{3}+\frac{3 x}{32}\right)-m\left(1+\frac{88}{3}\right)+1}}$
Obviously for sufficiently large n it is
$K^{\prime}(n) \leq \frac{m \cdot n!\cdot k!}{2^{\frac{m^{2} \varepsilon}{16}}} \longrightarrow 0 \quad$ for $n \rightarrow \infty$.
II. Let $k^{0}+1 \leq r \leq k-2$. We suppose that cil aubgraphs with at least $\frac{m}{2}\left(1+\frac{\varepsilon}{2}\right)$ vertices are asymmetric. Hence
$K_{r}(n) \leq\binom{ n}{k}\binom{k}{x}\binom{n-h}{k-r} \cdot 2^{\binom{k}{2}} \cdot(k-r)!\binom{k}{r}$. $.2^{(n-2 g n+x)} 2^{(n-2 x+x)(2 n-x)} 2^{(x-x)(k-x)}$

Analogously as in case I we can derive
$\frac{\overline{\mathrm{K}}_{x+1}^{\prime}(m)}{\overline{\mathrm{K}}_{x}^{\prime}(n)}=\frac{(k-r)}{(x+1)(n-2 k+x+1)} \cdot 2^{n} \geq \frac{1}{m^{2}} \cdot 2^{\frac{m}{2}(1+\varepsilon)}$
The last number is greater than 1 for every sufficiently large n and for every r satisfying the conditions of the
case II. Thus for sufficiently large n it is $\mathbb{K}_{f}(n) \leq$ $\leq K_{k-2}(n)$ and
$K^{\prime \prime}(n) \leqslant m \cdot \bar{K}_{k-2}^{\prime}(n)=n \cdot \frac{\binom{m}{k_{k}}\binom{k}{2}^{2}\left(n_{2}-k\right) \cdot 2}{2^{\left(k_{2}\right)-\left(k_{2}-2\right)}} \leqslant \frac{n^{7}}{2^{2 k-n}} \leqslant \frac{n^{7}}{2^{m_{2} \varepsilon-2}}$.
The last term tends to 0 for $n \longrightarrow \infty$.
III. Let us notice that the number of all k-graphs G satisfying
(i) all subgraphs of G with at least $k-2$ points are asymmetric,
(ii) there exist two different isomorphic ($k-1$)-subgraphs of G
by $k \cdot 2^{\left(k_{2}-1\right)} \cdot(k-1) \cdot(k-1) \cdot 2 \leqslant 2 \cdot k^{3} 2^{\left(k_{2}-1\right)}$.
Further let us notice that there is no asymmetric ($k+1$)graph G which satisfies:
(i) there exist two different copies of some k-graph G_{I} as subgraphs of G,
(ii) all ($k-1$)-subgrapha cif G_{1} are asymmetric and non-isomorphic to one another.

From these facts it follows
$K_{k-1}(n) \leq\binom{ n}{k} \cdot k \cdot(n-k) \cdot 2 \cdot k^{3} 2^{\left(p_{k}-1\right)} \cdot 2 k \cdot 2^{\left(n-k_{2}-1\right)} \cdot$ - $2^{(n-k-1)(k+1)} \quad$ and $\frac{K_{k-1}(n)}{G(n)} \leqslant \frac{\binom{n}{k_{n}} \cdot n^{6}}{2^{2 k}}$.

However, the last term tends to 0 for $n \rightarrow \infty$ (see Lemma 8). This proves the theorem 2.

From Theorems 1, 2 it follows easily:
Corollary 1: Let $\varepsilon>0$. Then the most of n-graphs
(in the sense of limit) have all its subgraphs with at least $\frac{\pi}{2}(1+\varepsilon)$ vertices asymmetric and non-isomorphic to one
another.
Corollary 2: Let $\varepsilon>0$. Then the most of n-graphs (in the sense of limit $n \longrightarrow \infty$) are uniquely determined (up to isomorphism) by the family of its subgraphs with $\left[\frac{m}{2}(1+\varepsilon)\right]$ Vertices.

Proof: Erery graph which has all its subgraphs on $\left[\frac{m}{2}(1+\varepsilon)\right]$ vertices asymmetric and non-isomorphic to one another, has the described property.

From Corollary 2 it easily follows that the Ulam 's hypothesis is true with probability 1.

References
[1] F. HARARY: Graph theory, Addison Wesley, Reading, (1969).
[2] V. MULIER: The edge reconstruction hypothesis is true for graphs with more than $n \log n$ edges (to appear in Journal of Comb. Theory (B)).
[3] J. NESKETKIL: On approximative isomorphisms and UlamKelly conjecture, Berichte der XVIII. IWK, IH Ilmenau(1973), 17-18。
[4] S.M. ULAM: A collection of mathematical problems, wiley (Interscience, New York, 1960).

Matematicky ústav CSSAV
Žitna 25, 11000 Praha 1
Ceskoslovensko
(Oblatum 6.7. 1976)

