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COMMENTATIONES MATHEMATICAE røl¥EШITATIS CAHOL.ШÆ 

19,4 (1978) 

ISOMOHPЯISMS OF PЙOШCTS OF INFINITБ GRAPHS 

Шгa THNKOVІ, Ұáclav KOUBEK, Praћa 

Abstract: We prove that every countable commutative 
semigroup can be represented by normal products or cartesi
an products or cartesian sums of countable simple graphs. 

Key words: Products of graphs, representation, commu
tative semigroup. 

AMS; 05C25, 06A50, 08A10, 20M30 

% a graph G
 s
 (V,l) we mean an undirected simple graph, 

i.e. V is a set, Icexp V and eeE implies card e = 2. 

Given two graphs, say G = (?,I), G' = (?',E*), the fol

lowing products are investigated (in the terminology of £B1). 

Cartesian product G x G' = (WfE,) 

Cartesian sum Q x G' = (W,E«) 

Normal product G J< G' = (E,B^). 

In all these cases, the set of vertices W is equal to ?xV # 

and the sets of edges E-,, Eg, E^ are defined as follows. 

(<v,v'>, (u9n'y)€M1 iff (v,u)eE and (v',u')cl'; 

(<v,v'>, <u,u'>)eE2 iff either v = u and (v'fu')6 E' 

or v' = u' and (v,u)fel.| 

and E-* = E-jU Eg. 

(In CB-I, x is denoted by x , x by + , x by • .) 

Clearly, each of the three types of ptrpducts x , i = 

= 1,2,3, defines a commutative and associative operation on 
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the. class of all isomorphism types of graphs, i.e- the class 

t$J of all isomorphism types of graphs endowed with x (or 
% % 

x or x , respectively) forms a "large" commutative semi

group. Which commutative semigroups can be embedded in it? 

By [.KKlland Cfr^J, every commutative seimgroup can be embed

ded in (€* fx )• In the present paper, we show that it can be 

embedded also in (€i fx ) and (fifx )• Moreover, we show that 

the embedding can be in a sense uniform with respect to all 

these three types of products and that countable commutati

ve semigroups can be embedded into isomorphism types of coun

table graphs (which is a new result also for x. ). More pre

cisely, the aim of the present paper is to prove the follow

ing 

Theorem. For every commutative semigroup (Sf+) there 
exist collections <f G. (x) I xeS, i = 1,2,3} and 4<*> ^l x,y e l * xfy 

e Sf such that 

(a) Gi(x) = (¥(x),I i(x)) l i = l,2 f3 f are graphs with 

the same set of vertices ¥(x); i J x J n l L d ) = 0 and B,(x) u 

y l2(x)el^(x).; 

(b) for every x, y€Sf w is a bijection of ¥(x) x 

x¥(y) onto ¥(x + y) such that i t is an isomorphism of 

Gi(x)x Gi(y) onto G^x + y) for i « l f 2 f 3 | 

(c) i f < x f i > f <x#
fi

#>€ Sx4l t2 f3i f < x f i > * < x ' f i # > f 

then G.(x) i s not isomorphic t o G. ( x # ) j 

(d) if S is countable, theî  all the sets ¥(x)f xeS, 

are countable. 

We give the detail proof of the theorem in the case 

that the given semigroup S is counts tie. If S is not count

able (and the cardinality of the sets ¥(x) is not restrict-
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ed), the whole construction can be essentially simplified. 

This is sketched in 15. at the end of the proof. 

Let us notice that the representation of commutative se

migroups by products of graphs in the above sense generalizes 

the non-validity of cancellation, square root property, Can-

1or-Bernstein property and some similar oroperiies. Products 

of graphs and relational structures witn respect to these 

Toperties have been investigated in a number of papers, let 

us mention at least fLJ, [McFIl and f ChJ for the older refe

rences* 

1, First, let us recall Low these three types of pro

ducts are defined in the infinite case. Let iGioc } \ac €> Af 

be a collection of graphs, G^oo) = (VCoC/)̂  £(*.<,;)« 

Then TT^ G(«c ) = (V,E. ), i = 1,2,3 are graphs defined on the 

set V = TTA V(cc ) as fellows ( «L. :V—> V(©c) denotes the oo-

th projection) 

(u,v)e E x iff ( 3^ (u), vr^ (v))c £(<*,) for all cc e k; 

( u , v ) e E 2 i f f t he re e x i s t s (3 e A such t h a t ( ^ ( u ) , 

3T^ (v)) e E ( £ ) and 2r^(u) = ^ (v) for a l l ©s e A \ < / i j * 

( u , v ) e E-* i f f u4sv and for every ac e A e i t h e r 3r (u) = 

^ ^ O O ^ ^ 0 r ( ^ ^ U ) t *&; ( V ) ) d E(Cfr). 

2 . Denote by i: the se t of a l l non-negat ive i n t e g e r s . Let 

Pn be the (n + 3 ) - t h prime ( i . e . P0
 s 5 ) , q n = p n - 1. For n e 

e N def ine 

V(n) = 4 0 , 1 , a } u ( N x q n ) , 

E(n) = 4 ( C , ! ) , ( ! , n ) l v i (a , < C , z » | z € 

€ q n l u { «m,z> , <m4 1. 2 » | meM,ze qR? , 

G(n) = (Vkn) ,E(n) ) . 
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3* Let us consider N as an additive semigroup. Denote 

N 

by N the set of a l l functions on N with the values at K 

(and with the addition defined by (f + g)(m) = f(m) + gin) 

for a l l n e N ) . Denote by § the constant zero. For f e n \ 

MOl put 

L(f) = | < j f n > ( n e N , 0 - c j ^ f ( n ) | 

Since f + (D » L(f) i s non-empty. If £ = < j ,n> e L(f), put 

J - n , For every f e N E \ 4 0 i denote 

and denote by 3fg :?(f)—> ?(JT ) the *£ -th projection. For 

every pair f, g € l c \ 4 © | define 

y f g :L ( f )vL(g )—• L(f + g) 

(where v denotes the disjoint union) by 

*Tf g < j»n>= <j,n> for <j $n>eL(f), 

i | f f g < j , n > = <f(n) + j f n> for < j , n > e L ( g ) . 

Then ifr# i s a bi ject ion, defining a bi ject ion 

Pf g ; v ( f ) x v ( g ) — * ?(f + g) 

by the rule <$r» e ®f = t T ^ for a l l i e L ( f + g ) . 

Denote by 

p 1 : ? ( f )x¥(g)—> ?(f) 

p 2 : V ( f ) H V ( g ) ^ V ( g ) 

the first and the second projections. 

4. Let a countable commutative semigroup (S,+) be gi
ll 

ven. Denote by exp N the commutative semigroup of all sub-

N sets of N (where the addition is given by the usual formula 
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A + B = i t + g | feA,geB^ ). By CTfgJf there exists a homo-

mo rph ism 

g:(S, + ) —* ̂ exp tP' 

such that 

(i) for every xeS , h(x) is infinite and countable andf 

for all feh(x) , f(n)+ 0 for inf ini te^ many neN| 

(ii) for x, x eS t x + x # i the sets h(x) and h(x#) are 

disjoint. 

For every xeS , f i h ( x ) , we define by induction 

X (x,f) = ive¥( f ) j ffg (•) = 0 for a l l JL g L(f) except 

a finite number } ui v eV(f) | 3Tg (v) = 1 for a l l Xe L(f) ex

cept a finite number}, 

x n+l ( x ' f ) = K ^ a . S ^ , .>*.-». ^ f - . f - ^ W l ^ 
f1e^<«1 . ,f a«A.Ca4),f . t+f.-f 

* X n ( x 2 , f 2 ) ) u y s ( P 1 ? f y x n ( x + y , f + g ) ) u 

fr • *» C<U;> 

«-P2fg^f(Xn(x + y,f + g))f 

x(x-f) a«iJoV*.-')-
(Let us notice that if f c L-*Lh(x), then there is unique 

xeS such that feh(x). Hence we could write only X(f) in

stead of X(x,f), but we prefer the more expressive notation 

X(x,f). 

5. Lemma. For every xeS, fch(x), X(xff) is a count

able subset of V(f). For every x, x#c Sf feh(x), f e h(x
#)f 

?f f m aP s X(x,f ) K X(x#,f#) bijectively onto X(x + x#
f f + 

+ f #). 

Proof, Since all the sets ¥(n) are countable, the set 
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X (x , f ) i s coun tab le . Since S and a l l the s e t s h(.y.) , y e S, 

a re coun tab le , any X n (x , f ) i s countab le . Hence X U , f ) i s 

coun tab le . Since q> f f ^ x
0 ^ x l , f l ^ K X o ^ x 2 ' f 2 ^ ) ^ X o ^ f l + f 2 ' 5 , 

we obta in X (x , f )c X x (x , f ) j then X n (x , f ) c X n + 1 (x , f ) for a l l 

x3ftn$ hence, c l e a r l y , ff f, (X(x,f )x X ( x ' , f ' ) ) z* X(x + x ' , 

f + f ' ) # Conversely, i f u e X ( x + x ' , f + f ' ) , put v = P1ff
1

f^ 

and ( u ) , v ' = P 2 ? f f ( u ) . Then v 6 X ( x , f ) , v ' e X(x, ' f ' ) s 

? f f /<<*»• '>) = ** 

6 . We r e c a l l (see 3 . ) t ha t fo r f e NN \ 4 Q J , ,£ = 

= < i , n ) e L ( f ) , I i s defined as n and the graphs G(n) a re 

defined in 2 . Now, put 

G. ( f ) * TT4 G ( f ) 
1 £ e L C # ) 

for i « 1,2,3. Then, clearly, V(f) is the set of vertices of 

all Gx(f), G2(f), G^(f). Moreover, for every f, g e N
N \ 4 #i ., 

ff % ̂  an isomorP}lism of G.(f)x Q^(g) onto G^(f + g) for 

all i = 1,2,3. For every xeS, f6 h(x) denote by H^Xjf) the 

full subgraph of G^(f) generated by the set X(x,f). Then the 

domain-range restriction of ff ft is an isomorphism of 

Hi(x,f)x n±lx'ft') onto H^x + x',f + f') for all i = 1,2,3. 

For x|S define 

G1(X) %iW Hi ( X' f ) )n-

More in detail, consider the set V(x) = f ^ L ^ ) X(«c,f) *-ff I K 

x|n1 and define the graph G^Cx) = (V(x),l^(x)) such that for 

every feh(x), neN, the gapping z i v ^ < z,f,n ) is an isomor

phism of Hj^Xjf) onto a full subgraph of Gi(x) and there are 

no other edges in G^(x) than edges obtained by this way. Then, 

clearly, V(x) is the set of all vertices of G,(x), G2(x), 
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G3(x) and E1(x)nE2(x) = 0, E-j (x)u B2(x)c .E^Cx}, i.e. the 

system | G . ( x ) \ xcS, i = 1,2,3§ has all the properties, re

quired in (a) of the Theorem. 

7. For every xf x'e S choose a bisection 

T x x «
: ( h ( x ) K N ) K Ch(x')* N ) — ^ h(x + x')x N 

such that always y x „(<f,n>, <f #,n'>) = <f + f',m> (this 

is oossible because h(x) + h(x') = h(x + x')). Now, define 

9x x / *V(x )x v - (x ' )—•Vlx + x ' ) 

by 9?x x / « z , < f , n > > , < z ' , < f % n ' » ) = <ff f „ ( z , z ' ) , 

y x x/«f,n>, <f',n'>)> . Thus <px x , maps the product of 

the n-th copy of X(x,f) and the n'-th copy of X(x',f') onto 

the n-th copy of X(x + x',f + f') as p- -, . Since y 4 is 

a bisection, m . is an isomorphism of G. (x)x G. (x ) onto 

G. (x + x ). Hence the system -Cop̂  _, | xfx'g> Sf has the pro

perties required in (b) of the Theorem. 

8. It remains to prove (c). First, let us notice that 

for every xftS, G-j(x) contains vertices of the degree 1 (na

mely the points of all copies of H-j(x,f)f having all coordi

nates equal to 0) but neither G«(x) nor G-*(x) contain such 

vertices (by (i) in 4., L(f) is infinite for every feH(x), 

hence all vertices of Gp(x) and G-»(x) have infinite degrees). 

Hence G-. (x) is never isomorphic to G2(x') or G-j(x'). For 

every xc S, G-»(x) contains triangles (the points of X(x,f), 

having all coordinates in 4 0,1 § , form a complete §*aph in 

H-*(x,f)), but no G2(x) contains a triangle (because no G(n) 

contains a triangle). Hence G-Ax) is never isomorphic to 

Gp(x'). Thus, it suffices to prove that if x + x', then G. (x) 
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is not isomorphic to G«(x#) for i = 1,2,3. First, let us pro

ve a lemma, suitable for all the three cases. 

$• Lemma, (oc ) If ulX(xff), then there exists Fe L(f) 

finite such that ^ (u) € <0,1| for all 1 e L(f ) \ F; 

((S) Let ueX(x,f)f veV(f){ let there exist FcL(f) 

finite such that for all 1 c L(f)\F both ^ ( u ) , sr^ (v) are 

in 40,11 and 3Tg(u) + §r^ (v)| then veX(x,f). 

Proof. X(x,f) is defined as ^ Q Xjl(x,f). X0(x,f) ful

fils (oc) and (/& )• Then proceed by induction (simultaneous

ly for all xeS, feh(x)) by n. 

10. We recall (see 2.) that p n is the (n + 3)-th prime. 

Lemma. Let u be a vertex of E,(xtf). Then its degree 

is equal to the prime p n iff there exists t = <jfn> e L(f) 

such that Wgiu) = 0 for all £e L(f)\4t| and m^ (u) = a. 

Proof. Let a vertex u of H-»(xff) be given. Denote by L 

the set of all^e L(f) such that 3Tg(u) «- 1. If L is infini

te, then the degree of u is infinite. For, we can find a ver

tex u* joined by an edge with u for every i e L such that 

ĵl ̂ u4 ' s a> ^M^M ' = ° for a11 ^ e L ^ ̂  * » ^%^UZ ' = 

« 1 whenever 3Fĵ (u) = 0 . Let us suppose that L is finite. De

note by F the set of all Je L(f) such that ^(u)4»0, so F 

is finite. For every M = <jfm> 6 F denote by d\g the degree 

of 9l*g (u) in G(n). Then the degree of u in H-^x^f) is equal 

to -TT d« . Since w» (u)#0 whenever J e Ff TT. d« is a pri-

me iff F has precisely one element, say F =«ft| . Moreover, 
dt s pn if^ t ss<Jfn>af-d **$ Cu) = a. 

**• Proposition. If x4-x#, then G^(x) is not isomorph

ic to GMx'). i 1* 
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Proof. By the previous lemma, t can be recognized from 

the graph H-j(x,f). For, f(n) is the number of vertices with 

the degree p . Let us mention that all these vertices are 

contained in the same component of H^(x,f), namely the com

ponent containing the unique vertex u of H^(x,f) with the 

degree 1 (i.e. the vertex with wt% (u) = 0 for all£# L(f). 

If x + x'f choose f e h(x)\ h(x
#). Then G-ĵ x) contains a com

ponent with a vertex with the degree 1 and exactly f (n) ver-

zices with the degree p for every n«N, but G-,(x#) contains 

no such component. 

12. Given a graph G =* (?fl)f and u«? f denote b(u) = 

= 4v t?|(u,v) i I| . Denote hy c(u) the supremum of cardina

lities of all sets Ccb(u) such that any pair of elements of 

C is not joined by an edge. 

Lemma. Let u' be a vertex of H^(xff). Then c(u) is e-

qual to the prime p n iff there exists t = <j»n>cL(f) such 

that Qtg (u) = 0 for all £ m L(f )\ it f and W^ (u) = a. 

Proof. Let a vertex u§,M~*(x9t) be given. Denote \y L 

the set of all Ze L(f) such that i3r*(u) = 1. If L is infini

te, then c(u) « 4* . For, we can find a vertex U| joined by 

an edge with uf for every X c Lf such that u* and u~# are 

not joined by an edge whenever £ , £! e Lf £ 4.&* (it is suf

ficient to put 3fg (Ujg ) = a, ar^ (u^ ) = 0 for all keL\4JJ # 

fff^tuji ) = Û u (u) otherwise). Let us suppose that L is fini

te. Denote by F the set of all £ * L(f) such that Wjg (u)afcO, 

so F is finite. If v is a vertex of H-Ux-f), joined by an ed

ge with u, then, by the definition of TT* , the vertex IF such 

that % (v) = 3fg (v) for aH £ < Ff 3rj (v) = 0 otherwise, is 

joined with u as well as with v. Hence, the number c(u) is 
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determined by the subgraph generated by all vertices • with 

2r» (v) = 0 for all j€L(f)\F» For every JL = <j,n>eF deno

te by C£ the number c(t?r̂  (u)) in G(n). fhen c(u) = «TX. ®£ «> 

This is a prime iff F has precisely one element. Clearly 

c(u) = pn iff F = 4 t l f t = < j , n > and Url (u) = a. 

13• Proposition, If x.f:x#, then GAx) i s not isomorph

ic to G^(x#). 

Proof. % the previous lemma, f can be recognized from 

the graph H^(x,f). The r e s t of the proof i s quite analogous 

as in 11 . 

14. Given a graph G = (?,1) and u e ? , consider the sets 

Acb(u) (where b(u) i s as in 12.) such that 

i f v, v#c A, v-^v ' , then (v ,v # )^ 1 and for no wc V, 

d i s t inc t from u, (vfw) and (v#,w) are in I# 

Denote by a(u) the supremum of card ina l i t ies of a l l such sets 

A. 

Lemma. Let u be a vertex of H 2 (x , f ) . Then a(u ) = 1 

i f f Jfe(u0) = 0 for allii, L(f) . 

Proof. If 0Tj(iio)4-O for some Jt e L(f) , then a(uQ)2:2 

because 3r>(*0 &as th i s property in G(j£ ), I f jru (u ) = 0 

for al l jfceL(f) and v,v#e b(u ) , v4-v' f then there exis t k, 

k#6 L(f), k # k # , such that 3r^(v) = 1, *JV*(v') = If s% ( O = 

= 0, Sfclv) = 0 and 3r^(v) = m^ (v#) = 0 for jl c L ( f ) \ | k , k # | . 

Then wf defined by ?rĵ (w) = 3& #(w) = 1, w^ (w) = 0 for JL c 

€ L(f) \ 4 k,k#} f is d i s t inc t from u and is joined with both 

v and v . 

Lemma. Let u be the unique vertex of Hg(xff) such that 

a(u ) = 1. Let u be a vertex of IL^Xjf). Then there exists 
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t = < j , n > e L(f) such that 3r± (u) = a, fr^ tu) « 0 for a l l 

£ e L( f ) \« i t J i f a(u) = p n and there exists v e b i u 0 ) such 

that u e b(v) . 

Proof. Clearly, i f #rt (u) = a for t = < j ,n>€ L(f) and 

crfg (u) = 0 for allege L(f ) \ -£ t} , then u has the property. 

Conversely, l e t a(u) = p and there exists v such that v £ 

e b(u ) , U6b(?)» Then necessarily there exists t € L ( f ) such 

that 3Tt(v) = 1, 3T̂  (v) = 0 for a l l ^ e L(f)\-Ctf . Since u e 

6 b ( v ) , e i ther ^ ( u ) 6 < 0 , a | and % (u) = 0 for a l l l e L(f)\ 

\ 4 t | or 3f. (u) = 1 and there exis ts t ' c L(f) f t ' + t , such 

that -iri#(u) = 1 and ar^ (u) = 0 f o r £ e L ( f ) \ i t , t ' ? . But the 

second case i s impossible because this implies a(u) = 2# In 

the f i r s t case, a(u) = p n implies *st. (u) = a and t = <jfm> 

for some j -wf(n) . 

Proposition* I f i ^ x ' , then G^(x) ^ s no^ isomorphic to 

G 2 (x ' ) . 

Proof, By the previous two lemmas, f can be recogniz

ed from the graph Hgtxjf). Then proceed as in 1 1 . 

15. If the cardinal i ty of the constructed graphs i s not 

l imited, the construction can be simplified and generalized 

as follows. Given an arbi t rary semigroup (S f+) f there exis ts 

a homomorphism h;S—*• exp m , where M i s a set with card M = 

= iff • card S, such that card h(x) = M Q» card S, every f £ 

c h(z) i s non-zero for inf in i te ly many meM and h (x )nh (x # ) « 

= 0 for x4-x% by £Tr 2J . Choose a col lect ion 4 (£n\ neM? of 

d i s t inc t cardinals with ( 2 n > 2 c a r d M for a l l meM and def i 

ne 
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V(n) = 4 0 , 1 , 8 , ^ , ^ 1 u 

f ( ^ 0 i ^ i H /3nnN) 

I (n ) * 4 ( 0 f l ) f ( l f a ) f ( a f v 0 ) f 

(a ,v 1 )JyC(T j l<0,«>^ 

| j = 0 , 1 , z€ (lju 

u4«m,z>f<m + l f * » | 

G(n) « (V(n),I(n)) 

and put G.(f) = TT4, 0(1 ), QAx) = JJ „ . (04(f)) . 1 4.€L^) x feXCx) i » 

Then for the collection 4G£(x) | i = 1,2,3, xc S| a system 

iqx J x,y€ 3} can be found such that (a),(b)f(c) of the 

theorem are fulfilled, the proofs are analogous as the pre

vious ones. 

^* MEBE&m % tne method of [AKJ, the presented the

orem can be generalized (with straightforward modifications 

of the presented proof) to the sum-productive representati-
i 1 

on of ordered commutative semigroups "uniformly w by x , x , 

K , i.e. given an ordered commutative semigroup ( S , + , 4 . ) , 

there exist collections 
& - iQ±(x)\ x#S, i =,lf2,3|f # *<%cfyl

 x»y« si 1 

ir» < T X ) X , | I / I s, x4x#i 
such that |r and § fulfil (a),(b), (c), (d) of the theorem 

and, moreover, 

(e) for every x,x#e S, x£x'9 f * x x# is a one-to-one 

mapping of V(x) into V(x#) such that it js an isomorphism 

of 0^(x) onto a summand of G^(x') for i = 1,2,3; 
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(f) i f x , x ' e S and x . 6 x ' i s n o t f u l f i l l e d , t h e n G^(x) 

i s n o t isomorphic to any summand of 0 « ( x ' ) f i , j c 4 l , 2 , 3 i . 

(We r e c a l l t h a t a subgraph G « (V,B) of G# = (V% B') i s 

sa id t o be i t s summand i f t h e r e i s no edge i n G' j o i n i n g a 

v e r t e x of V wi th a v e r t e x i n V'\V.) 

H e f e r e n c e s 

[AKl ŁЂÂШK J., KOÜBЖ V. î On representationэ of orđered 

comшutative emigroups, to appear in the Procee-

đings of Coll. on semigroups, held in Sîsegeå in 
August 1976. 

[й] BBЮI C : Grapћs anå Hypergrapћs, Norht Hollanđ P.C 

1973. 

[CH] CHAШ C C : Carđinal and ordinal шultiplication of re-

lation types, Proc. of Symposia in pure mathema-

ticв II. Lattice theory, Amer. Math. Soc. 1961, 

123-128. 

[ЮfR] KOUBIK V.
f
 HŠETЙIL J.

f
 RODL V.; Bepresenting groups 

and semigroups by prođucts in categories of rela-

tions, Alg. üniversalis 3(1974), 336-341. 

[L] LOVASZ L.: On the cancellation law among finite гela-

tìonal structures, Periodica Math. Hung. 1(1971), 

145-156. 

[McK] McKENZIl R.: Carđinal multiplication of structures 

with a reflexive relation, Pund. Math. 70(1971), 
59-101. 

[ TrЛ Trnková V.: On a representation of commutative semi-

groups, Semigroup Porum 10(1975), 203-214. 

[Tr2l Trnková V.: Isomorphism of prođucts and reoresenta-

tion of commutative semigroups, to appear in the 
Proceeđings of Coll. on semigroups helđ un Sze-
ged in Áugust 1976. 

651 -



Matamaticko-fÿzikální fakulta 

Univarsita Karlova 

Sokolovská 83, 18600 Pгaha 8 

ðeskoslovensko 

(Oblátům 4.7. 1978) 

652 


		webmaster@dml.cz
	2012-04-28T03:38:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




