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COMMBNTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 
20. 1 (1979) 

FUNCTIONALS WITH LINEAR GROWTH IN THE CALCULUS OF 
VARIATIONS - II 

M. GIAOUINTA. G. MODICA. J. SOUCEK 

This part is the direct continuation of the preceding 

paper in this issue. 

3. About the regularity theory. It is well known.that ge

neralized BV solutions to the non-parametric Plateau problem 

are locally Lipschitz continuous and consequently analytic func

tions. As the two following examples show, the minimum points 

of our functionals may be non-smooth; in fact they may hairs 

jumps not only on the boundary but also on the interior of their 

domain, and therefore they cannot be H » functions. 

So if we want to obtain some regularity result, we hafre to 

restrict the class of functionals to be considered. In fact we 

wi\l prove that minimum points are Lipschitz continuous and the* 

refore smooth for functionals of the kind of the area (we are 

giving below the exact conditions). 

Conditions are the ones of O.A. Ladyzhenskaya and N.N. 

Ural'tseva, see i131, and roughly speaking we can say that they 

are the ones that grant the a priori estimate of the gradient* 

We do not show that these conditions are necessary, but, as ex

ample 3.2 shows, if these conditions are not satisfied, then 

solutions may have jumps on the interior. 
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Our exanroles concern the 1-dimensional problem, but it 

is not difficult to extendtheuito any dimension, for example in 

a ring. 

Example 3*1. Let ueBV(-l,l) be a generalized solution to 

problem 

J\ s/T+ o^(t) ů 2 dt-

( u(-l) = - a, u(l) = a 

that is u minimizes in BV(-1,1) the functional 

3 í tul = / A \/l + oc(t) ů2 + \foc (-l)|u(-l) + a |+v/^OJÍud)-* 
(-1,1) 

where 

cб(t) = 1 + t 2(log тf^) 4 

and a is a real constant such that 

A - 3-

a > f (oc(t) - 1) ? dt . 

First we have 

(3.1) u(-l) = - a , u(l) «'a; 

to see this, consider the BV(-1,1) function 

u(t) - u(-l) - a -l£ X< 0 r uvw - uv-x; -

^ u(t) - u(l) + 

v(t) 
0 < t á b 

If (3.1) does not hold, then 

3» [v] = / \ / l +oc(t)v2 + \/ooCO)|u.(0) - u.(0) - u(-l) + 

+ u(l) - 2a I-* / \nT + oc(t)v2 + s/V(0)W (0) -
(-4,4)40* 

- u+(0)t + \/<*(-l)tu(-l) + at + %/*(*>Mu(l) - al * 3* L u} 

that is we reach a contradiction. 
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On the other hand u cannot belong to H l f l(-l,l). In tMs ca

se, in fact, we could define from the Euler equation that 

u(t) a — a.e. in (-1,1) 
*>(-b)s/oc(i)- & 

for some 7i e 1R with 2c & min oo , hence the contradiction 
M,4 3 

\ u(-l) - u ( l ) U J l&ldtA J" — 
- 1 —^ s/i 

dt 
ocčt)~>I 

A.t this point we have proved that the minimum point u takes 

the boundary datum and does not belong to H » (-1,1). To com

plete our example we want now to prove that u has a jump ex

actly in zero, that is-, that the singular part of the measure 

u in the Lebesgue decomposition has support in zero. 

Let (uR,us) be the Lebesgue decomposition of u with respect to 

the Lebesgue measure «u . Consider the BV(-1,1) function v 

characterized by 

v R -- u R v(-l) = u(-l) 

*S " £< U S * St> 

where d£ is the Dirac measure, with support in 0. Then v(l) -= 

= u(l) and the following estimate holds: 

£ s/l + * v 2 - S^ y T T T r f + /ST(0) I j £ fis \ £ 

* J* s/l + ec v | + s/oc{0) /* I u s I 

Now, since u is a minimum point, we deduce 

jfJ yfiZ I u s I * v/^To) Jf̂  I fis I 

i.e. supp Uo-r4.0if. On the other hand from the above conside-
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ration it is clear that u g is not the null measure. 

Finally note that the above example* does not work if we suppo

se sc(t)« C ' (-1,1), still with a minimum in zero (in fact 

we have in this case 

A - \ 
j (oc(t) - oc(0)) ' dt = + 00 ), 

while jumps on the boundary may still occur with smooth 00C+;) 

with minimum on the boundary. 

Example 3.2. Let ueBV(-l,l) be a generalized solution 

to problem 

f' (1 + oc (t)lulk)1/k dt—• min 
mi 

(3.2) % 

u(-l) » - a u(l) - a 

p 
where k > 2 , oc(t) = 1 + t and a is a constant greater than 

/ [ ( l + t
2 ) k / k - 1 - X ] - 1 / k d t < + a:>. 

Exactly as in example 3.1 it is easily seen that the solution 

is smooth in (-1,1) \ i 0}, takes boundary datum and has a jump 

in zero. 

Note that this time the obstruction to regularity does not de

pend on regularity of ofr(t). 

The Bernstein genre of the Euler equation of functional in (3.2) 

is k. Therefore this example shows that the Dirichlet problem 

for equations with genre greater than two is generally not sol

vable on arbitrary domains (see C19J). 

We now state the exact hypothesis (see [133) under which 

we will prove regularity. We will suppose that SI be bounded 
*> — ft^ 

Lipschitz domain, f(x,p) be a function of class C (JL ̂ K ) 
o — 

and g(x,u) be a function of class C (Si x R ) . Also we assume 
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that there exist the £ , fppx derivatives, and that 

the following holds: 

(3.3) T)lpUf(x,p)6M(l • | pt) 

(3.4) lgul + If |Ac 

f p . ( x , p ) P i > Vx ч/l + l p | 2 - э>г 

«-5> 1 ' в l ^ W •'•в1* 

1 fp i Px ( x.P> Pí' * f 

(3 .6) g u u * B 

/ic,- _iiiiillu * f ftl1* " 1 *i^i- r^i-*piPjt-.p>fifj -

*M'S l --T7I7P-) 
where %> , M, a*,, /U»t are positive constants, c and %>£ ara non-

negative constants, and (£ ,p) denotes the scalar product in 

Jd*\ 

Finally we suppose that g(xfu) is such that there exist 

generalized solutions to problem (1.9) (see the end of para

graph 2). 

Conditions (3.3)...(3.6) are verified for example by the 

area or mean curvature functionals, by the functional in exam-

pie 3.1 if we suppose c^(t)e C (-1,1), but they are not satis

fied by the functional' in example 3.2. 

Remark that functionals which satisfy (3.3)...(3.6) have 

Bernstein's genre equal two, while the general functionals in 

paragraph 2, i.e. functionals for which onty (3.3) holds, may 
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have for example as Bernstein's genre any oc. with ec > 1. 

Finally observe that (3.6) implies that problem 

F[u3 « J^ < f(x,Du) • g(xtu) J dx—y rain 

u - 9 « H 1' 1^! ) 

has at most one solution in H » (-& )• 

We recall the notation 

an n~1 + 4 g ( x , u > dx 

for every ueBV(il ) and g> « L1(^il )j and every time we will 

want to emphasize the domain H where the functionals are con

sidered we shall put the subscript Si to & or F. Note that 

for every ufi H1,1(il ) with u * y on dil we have 3*1 uj « F£uj . 

Theorem 3.3. Let ty belong to L O i l ). Under the above 

hypotheses, every generalized solution u e BV(il ) to problem 

r 3 tu] > min 

(3.7) X 
L u£BV(il) 

is a locally Lipschitz continuous function. 

The idea of the proof is taken from Gerhardt £ 73. We first 

prove the following t 

Theorem 3»4. Under hypotheses of theorem 3.3 there ex

ists at least one solution to problem (3.7) which is Lipschitz 

continuous. 

Theorem 3.5. Let BR(x ) be an open ball w ith radius R 

small enough. Let (p be a smooth function on 8 BR. Then there 

exists at least one solution to problem 
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3 BL C u] —?• min 

u6BV(il) 

which is Lipschitz continuous on B« and such that the trace of 

u is equal to cp . 

Then, as in C7J, we will prove theorem 3»3'9 and, since we 

have just to change the functional mean curvature with B in 

111 to obtain the proof, we will omit it. 

We feet theorems 3.4 and 3.5 by an approximation argument 

using precise estimates (obtained with the same technique of 

tl33) of the gradients on solutions of approximant problems, 

the barrier technique and a devise in [9J. 

Proof of theorem 3*4. Let u f i B f ( J i ) be a solution to pro

blem (3.7) and let il* D D Jl . Extend u to ueBV(JX*) in such 

a wary that 

Jl^lDul = 0 and consider (see remark 1.7) a sequence 4^3 c 

c C*
>
(R'"') such that 

" h u - — *
 u

iэл
 i n L І ( 9 Л } 

-UA ' laл 
in L-(Д*) . 

For every h e M and every g, with 0 < e < 1, the approximant 

problem 

v C т 3 + *L*ІVr*г- mm 

vé H1»2(il*) 

v « uh on il* s il 

has a unique solution zh e Hx»*(il*)A C (il) and we have 
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(3.8) e4JD-h,fcl
2* r&Z^l* « t l t t , - | 2 t , - * r V 

so that 

ft4»,D^-.-*2» 6 y s h , - 1 2 ' 4*1DBh,e^ • 4.*l8h,e' 

are es t imated by a cons tan t which depends on u n , but does not 

depend on g . On the o the r hand, i f K c c K c c i l we have 

(3.9') s u p | » h > e | 6 c(di8t(K ,aK),6,ri8 h f e |2 , L l - h , e l > 

(the proof of this kind of estimates is standard, so we will 

omit it), and 

(3.9) sup iDz-, I £ c(dist(K,dK), sup I z. e I ) 
i/ n,i « n,e. 

(we delay the proof of (3.9) until later). 

Therefore, passing eventually to a subsequence, for £, going to 

zero we see that «fzn A converges weakly in BV(X1*) to some 

zn6 BV(il*) which is locally Lipschitz continuous in SI and 

equal to u-̂  on XL* V il .Also 

&i*lDS6h,«,i2--* *h • * . v ° 

and passing to the limit in (3.8) for e, going to zero we get 

Prom the last inequality we now deduce that 

li --n R BVilL*) * ^h * c o n s t a n t which does not depend on h 

and consequently 

sup I zhl, sup I -DB_1 6 constant which does not depend on h. 
K K 
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Hence, passing eventually to a subsequence, we may go to the 

limit for h going to infinity and infer that *Cs-ft$ converges 

weakly to some zeBVCO*) which is locally Lipschitz continuous 

in XI and equal to u in -CI5** s -ft. • Moreover we have 

k^—> U E 

r -z, cUc d$z x , r . x 

Vix-^--^r) "̂  * &.«<*••> **• * 

from which, taking into account convexity and homogeneity of ?f 

we deduce that A = 0 and z is a generalized solution to problem 

(3,7). q.e.d. 

We now pass to prove 3.9. In fact, we shall prove a sharper a 

priori estimate of the gradients and precisely 

Proposition 3.6. Let A.4 1 be a non-negative real con-
1 2 stant anl y e H * (Jl), let u^ be a solution to problem 

r ^ C ^ J + A J I Brl2 — * min 
(3.10) -j 

L T C H 1 ' 2 ^ ) T-ffi Hj»2(il), 

Then for every ball BR with B2R c e i l 

where C depends on ̂  osc uA and does not depend explicitly on 

The fact of emphasizing the dependence on •« Qsc UX *n *ne 

gradients estimate is just what will allow us to prove theorem 

3.5. 
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The following lemma due to Stampacchiat C 21J and the be

low Sofaolev estimate, which can be obtained with the same proof 

in Ll3], will turn out useful. 

Lemma 3.7. Let u(h,.£ ) and a(h,/£ ) be non-negative func

tions defined for h> 0 and 0 < t £ R , imcreasing in Z for h 

fixed and decreasing in h for Z fixed. Suppose 

u(h,£ )k °1 „ u(k,R) a(k,R)2/n 

CK-£)* 

/f 
a(h,£ ) ^ — u(k,R) 

where h > k > 0, 0 «c £ < R £ R . Then there exists d such that 

a(d,R0/2)u(d,R0/2) * 0 

and 

d^C2(c1,n) u(0,Ro)
1/2Ro"

T a(0,R o)"
l r 

where 

®-j*\/Fí • 
Lemma 3.8. Set 

S^ = 4(x,xn+1)c Jl x R^:x n + 1 = u A(x)?. 

Then for every g e C *° (BR) 

(L S^1 *Hn)^ * C3 (1 Icfgl
2 dJln) 

where C^ depends on osc u« . 
f\ 

Proof of proposition 3.6: the proof follows the one in 

tl31. Putting cp -= (u(x) - u(xQ)) $
2 with £ C C0

x>(B2R(x0)), 

6 =- 1 on B©(-Of t V 11 .6 c/R as test function in the Euler 

equation for the functional in (3.10) we deduce 
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*^W * fa * J 

-* C(l -i- \ osc * a) 

where C does not depend on X . 

Set 

cdx =- log (1 + | DuAl2) 

\ k S < x e i - J 0 > A ( x ) > k ] 

S A , * « < < * . « * < * > > « € A A f k J -

P u t t i n g in the Euler equat ion as t e s t funct ion 

9 = D8 (Bsu max(o>A- k ,0 ) £ 2 ) 

i n t e g r a t i n g by p a r t s and summing o r i s - l , n , we deduce , 

(3.12) T^J cr« A l*f 2 dlH B + A- Jf; ^ ( 1 , ( ^ 2 ) 1 

. .'2,2 ax.?c r («J, - k)2 I,*c 12 4-

+ A I d + I D " A I 2 ) ( « » - k ) 2 | D 6 | 2 

while putting <f = D
s ( V • « < « - * ~ k . O ) 2 § 2) w e Mwt 

e 
2 1 ^ 1 2 X 

(3.13) x ^ x ~ k ) ' , D ' V Y * c { j ^ л . k ) 

({íH.Яi>łA^łЧ|Sjfc

|í{|2 

( tóA-->2Ь 
Set now 

Ч ( Һ Д ) - Ч h ^ B * SA <*•* > * U ü ^ ) м R ) л s 
A 

=5 meas A, (h,-£ ) 
( h „ e > s m e a s AA *u v n f * ' i/v 

r1 1? 

«A (M > * W < - * ' k> + í(V)d * laul 2) 
167 - (<WA " k ) 2 



Using (3.12),(3.13),(3.11) and the Sobolev estimate in lemma. 

3.8 it is easily verified that hypotheses of lemma 3.7 hold 

for functions u ^ (h,4 ) and au (h,£ ) with constant c-.̂  depen

ding on -g. osc u^ . So that we have 

•*.*». .-v^o>4ed 

where d is estimated by a constant depending on "g osc u A 
*1R 

multiplied by 

Now to estimate (3.14), put in the Euler equation as test func

tion [u(x) - *(x0)l&x \ * it is not difficult to deduce 

+ (-C ** }M V ^,a-a * * 4 f t
, n ^ , a . aUi* 

and again choosing as test function DQ (D u • $ ) we derive 

(3.14)£ C (depending on g osc u ) x 

H[1_ ^U ., v v-. $-\^>* -j, J^vf 
and finally because of ̂  .6 v 1 + I Du4 | and (3.11) we get 

the proof. 

Unfortunately we are not able to show that a generalized 

solution and a smooth solution to problem (3.7) differ for 

constant. Had we proved this, then theorem 3.3 would easily 

follow • 

Since this is not the case, we have to prove theorem 3.5. 
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Howerer, this proof also yields us the method to prove global 

regularity. 

.Proof of theorem 3.5: remark that theorem 3.5 follows with 

the same proof as theorem 3.4 if we are able to state global es

timates (3.9*), (3.9). Concerning the estimate of the maximum 

of solution u^ we have: let u* be a solution to problem 

WjXvl « f fCx.Pv) • / g(x,v) • * / |Dv|2—•> min 
&* &R BR 

(3.15) 

r - 9 e Hjt2(BH) 

then 

1 u* »• ,4c 

ihere C depends on II 9 l« ^ • -Chi» is easily seen comparing 

WjLn^l with Fg computed on 

k in Ak « -[x £il :uA (x)> k| 

r(x) 
íu (x) in x £ Д Л . 4 k 

k> max \ cp\ , using the hypothesis on g (made to get existen-

ce in paragraph 1) which grants estimate essentially of this 

kind 

and the Stampacchia's well known global lemma analogous to lem

ma 3.7 (see T211). 

Now we pass to consider the gradient estimate. With the barrier 

technique (see Serrin £191) it is not difficult to show that 

for R small enough, there exists a constant K depending on the 
2 

C norm of 9 such that, if u^ is a solution to (3.15) than 
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(3.16) I ux (x) - u ^ (y) I £ K|x - yt 

for every xeB R, every y e 3Bj and every X with 0 L X 6 1. 

Now from (3.16) and proposition 3*6 (see theorem 2.1 of t 93 

or theorem 1.4 of CIO]) it follows 

»-«*»» , v c 

where C depends on the 0 norm of cp on 3 Bfi and does not de

pend on X • q.e.d. 

It is now clear that if cp is smooth and one is able to 

construct barriers relative to the functional F^ for an open 

set JC1 , then problem (3.7) has a unique smooth solution o n 5 

which takes the bouni ary datum <p . We do not enter this ques

tion. 

To close, we remark that x e H ' (-1,1) is an extremal 

for the functional 

řC.З« J1
 s/TTF - 3 f\f—£Ĺ J-1 J-i V 1 + 9 A 

This, perhaps, may show the relevance of the hypothesis of con

vexity on g(x,u). 

Note 

(1) F(x,Ap + ( l - a ) q ) ^ ^ F ( x , p ) + (l-A)F(x,q) for eve-

ry X e (0,1), the equality sign holding only if p and q l i e 

on the same ray from the origin. 
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