Commentationes Mathematicae Universitatis Carolinae

Jaromír Dada
 Mal'cev conditions for congruence-regular and congruence-permutable varieties

Commentationes Mathematicae Universitatis Carolinae, Vol. 20 (1979), No. 4, 795

Persistent URL: http://dml.cz/dmlcz/105969

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ANNOUNCEMENTS OF NEW RESULTS

MAL'CEV CONDITIONS FOR CONGRUENCE-REGULAR_AND CONGRUENCE-

PERMUTABLE VARIETIES

Jaromir Duda (Vysoké uceni technické v Brne, 60200 Brno, Ceskoslovenskol, received 20.8.1979

Notions. For any algebra $\sigma=\langle A, F\rangle$, an element a $\in \mathbb{A}$ and a relation R on A, the subset $\{x \in A ;(a, x) \in R\}$ is called a class of R. cuis called congruence-regular, tolerance regular, reflexive and compatible-regular if any two congruences, tolerances, reflexive and compatible relations on \mathcal{K}, respectively, coincide whenever they have a class in common.

Remark. Recently, I. Chajda has given Mal'cev conditions for varieties of (i) congruence-regular and congru-ence-permutable algebras (see [1]); (ii) tolerance-regular algebras (see [2]).

We state that these two classes of varieties coincide and some other Mal cev conditions hold.

Theorem. For any variety V the following conditions are equivalent:
(1) \vec{V} is congruence-reguka and congruence-permutable;
(2) V is tolerance-regular;
(3) V is reflexive and compatible-regular;
(4) There exist a $(2 n+3)$-ary polynomial t and ternary polynomials $p_{i}(i=1, \ldots, n)$ such that $x=t(x, y, z, z, \ldots, z$, $\left.p_{1}(x, y, z), \ldots, p_{n}(x, y, z)\right) \quad y=t\left(x, y, z, p_{1}(x, y, z), \ldots\right.$
$\left.\ldots, p_{n}(x, y, z), z, \ldots, z\right) \quad z=p_{1}(x, x, z)=\ldots=p_{n}(x, x, z) ;$
(5) There exist a $(n+3)$-ary polynomial r and ternary polynomials $p_{i}(i=1, \ldots, n)$ such that $x=r(x, y, z, z, \ldots, z)$ $y=r\left(x, y, z, p_{1}(x, y, z), \ldots, p_{n}(x, y, z)\right) \quad z=p_{1}(x, x, z)=\ldots=$ $=p_{n}(x, x, z)$.

References. [1] I. Chajda, Regularity and permutability of congruences, to appear in Algebra Univ. 9(1979).
[2] I. Chajda, A Mal cev characterization of tolerance regularity, to appear in Acta Sci. Math. (Szeged)

