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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22,4 (1981) 

O N NUMBER OF COVERING ARCS IN ORDERINGS 
V. KOUBEK, V. RODL 

Abstract: Two of results - a distributive lattice on n-
point set contains at most n loggn covering arcs. If the di
graph of covering arcs* of an ordering of n point set does not 
contain %a 2 C3va ?

 is t n e digraph consisting of all arcs 
leading from a point set to two-element set) then it has at 
most (1 • o(l),)| \/a - 1 n 3 ' 2 area. 

Key words: Covering arc, transitive reduct, transitive 
closure, ordering, lattice, distributive lattice, algorithm. 

Classification: 05C30, 05C20, 05A15 

One of the possibilities of an economical description 

of an ordering is by means of its covering arcs - a directed 

graph (X,R) is a transitive reduct (or a Hasse diagram, or a 

graph of covering arcs) of an ordering (X,^) if it is the 

smallest directed graph such that (X,fe) is a transitive and 

reflexive closure of (X,R). It is clear that if X is finite 

then for every ordering (X,£.) there exists its transitive 

reduct. The aim of this note is to give estimates of the ma

ximal number of arcs in the transitive reduct for special 

classes of orderings. We give also some applications of the

se estimates. 

In this note all sets (except the set N of all natural 

numbers) will be finite. If X is a finite set then IXI deno

tes the size of X. For a directed graph (X,R) denote 
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xR *iy;(x,y>e Rjf R* * -vy; (y,x) € Ri for each xeX. If (X,^ ) 

is an ordering then .\ts transitive reduct is denoted by 

Red(Xf^ ). 

Recall that an ordering (Xf^) is a lattice if every 

couple of points x,yeX has the smallest upper bound (or sup-

remum) - denote it by xvy, and the biggest lower bound (or 

infimum) - denote it by xAy. A lattice iXt&) ±a called dis

tributive if for every triple x,y,z of points of X 

(xAy)vz ~ (xvz)A(yvzl 

holds. 

If (̂  is a finite set of directed graphs, then an ordering 

(X,£ ) has property ?((#>) if for no graph (X,R) e (̂  thera 

is a one-to-one compatible mapping from (YfR) to Red(Xf£). 

Define functions dt£ tp~ from IN to itself as follows: 

d(n) =max<|Rl; (XfR) =rRed(Xf^)f |xl »n,(X,-&) is a dist

ributive lattice!, 

2(n) « max-\lRI; (X,R) 3 Red(X,4r ), 1x1 =* n, (x, ̂  ) is a 

lattice*, * r ^ -*max4lR|; (X,R) »Red(Xf&), 1*1 * nf 

(X,.^) is an ordering with the property (P(C^)J. 

For positive integers a,b define a directed graph # . » 
* a , D 

» (X,R) where X -* { 0 , 1 , . . • f a + b - l i and R * 4 ( i , j ) ; 0 ^ i < a , 

a ^ j ^ a + b . Denote for a ^ b , p Q > D - P ^ a > b > 3CDfal% * • giva the 

asymptot ical es t imates of funct ions dtM , p a for b > a > l . 

F i r s t we give two easy obse rva t ions . 

Lemma l : Every l a t t i c e has property Pt-Ctfg 2 ^ ) # 

LemjB§_£: For every n a t u r a l number n 

d ( n ) ^ X ( n ) * - p 2 > 2
( n ) 
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and for a ^ c , b ^ d p , ( n ) ^ p _ r J ( n ) . a, o c, u 

Theorem 3? (1 • o ( l ) ) * § * log n ^ d ( n ) ^ *-»log2 *-• 

Proof: F i r s t we prove the lower bound of d ( n ) . For 

t h i s purpose we consider the l a t t i c e of a l l subsets of a 

se t X with !Xl = k. This l a t t i c e i s d i s t r i b u t i v e and for 

Z ,CcX, (Z,V) i s a covering arc i f f ZcV and | Z U 1 = i V l . 

Thus there are iVl covering arcs leading to V. Hence the ' 

number of covering arcs i n t h i s l a t t i c e i s 

fe t k \ . p k / k\ k 2k = k - 1 

k k 
This lattice has 2 points and so if n =• 2 the d(n) 'Z 
Z 5 logpn. Let n be a positive integer. Then there exists 

exactly one increasing sequence {Jx'^2' * * • *^k^ °*- non-nega-
& 0 4 

t i ve i n t e g e r s with n = ^ZL 2 . For each i = l , 2 , . . . , k , l e t 

(X±f^) be the d i s t r i b u t i v e l a t t i c e of a l l subse ts of the 

se t \ 0 , 1 , . . . , - j j - l K We form a l a t t i c e (Xf&) such tha t X i s 

a d i s j o i n t union of X. and we define tha t for each i = 1 , 2 , . . 

. . . , k - l the smal les t element of (X.^, , <=) i s bigger than the 

biggest element of ( X ^ f c ) . Then (X,*.) i s a d i s t r i b u t i v e 

l a t t i c e , IXl = n and i f (X,R) = Red(X,-0 then |R | = 

= --§^/Ji2 • k - 1 . Fur ther 

§ l-Og2n - . S A i±2 ^ X , (2 log2n - ^ 2 x ) = 

=- ^ ( l o ^ n - d l ) 2 * , £ , 2 * • , 2 4 ( J k - j i ) 2 1 *' 

* 2 2 J l " 1 * ^ 1 2 1 - 1 - ^ i 2 1 - 1 < * + 

*i?i 2 < f , 2 ' 5 n 

Here we used tha t 
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<D J k ^ l o g 2 n < : J k -j- l 

(2) . 2 121"1 ~!k ( i - l ) ^ " 1 - . S i 2 i " 1 = t 2 t - l - - S 2 1 - 1 

* - 1 t r ^ L r ^ ^ ^ .2. 
and 

(3) . 2 , 2 i - 1 ^ 2 . S , 2 J l 

Thus we get the lower bound of d ( n ) . 

We prove the upper bound of d ( n ) . Let (X,=-=) be a d i s t r i b u t i 

ve l a t t i c e with (X,R) = Red(X,-£ ) . We show that i f for x e X , 

|Rxt = k, then there e x i s t s a one-to-one mapping cp from the 
k se t of a l l subsets of Rx to X, hence I X \Z 2 and so we have 

lRxl--=log2lX\, Define y(ti) = x and for U-J-ZcRx, 9 (Z) = V Z 

(the smal les t upper bound of Z; i t e x i s t s because ( X , ^ ) i s a 

f i n i t e l a t t i c e ) . To end the proof we have to prove tha t j> i s 

an i n j e c t i o n . By d i s t r i b u t i v i t y we get A i f ( Z ) , q>(V)i = 

= <^(Zr>V) for each Z,VCRx. Thus i f cp i s not i n j e c t i v e then 

t h e r e e x i s t s a s e t Zc Rx such that for some y<sRx - Z we have 

qp(Z) » <p(Zu±y7
s). 

Assume tha t Z is a subset of Rx with the smal les t s i ze such 

tha t for some y e R x - Z, <f(Z) = Cjp(Zoiyi) . I f I Z I = 1 then 

9 ( Z ) =- z for Z6Z and there fore | Z | ; ^ 1 . Choose z e Z and put 

V = Z - - C z l . Then . V U i Z l , hence <y(Z)*9CV) and 

y(V u 4 y j ) 4=9(V>. On the other hand, <y(V) =-A{ <j>(Z), 

a?(Vuiy\)l and 9 (Z) = eg (Z u - i y i ) ^ 9 (V u±y\) because cp i s 

compatible and so we have 9 (V) = 9 (V *J Ay}) - a con t rad ic 

t i o n . Thus 9 i s i n j e c t i v e and hence d ( n ) ^ n- log^n. 

Conjecture: d(n) = ( l + o ( l ) ) # § * l o g 2 n . 
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Corollary §: There exi9ts an algorithm which for a di

rected graph (X,R) decides whether it is a distributive lat

tice and in the positive case constructs operations supremum 

and infimum in time proportional to 0(|X) loglXl). 

Proof follows from Theorem 3 and Statements 1 and 2 in L43 . 

The best known algorithms deciding whether a bigroupoid 

CX,N/,/\) or a directed graph (X,R) is a lattice, require the 

same time - O U x P ' 2 ) - see L4J. The analogous fact does not 

hold for a distributive lattice - there exists an algorithm 

deciding whether a bigroupoid is a distributive lattice in 

0(1X1 ) time - see [31 whereas the beat known algorithm deci

ding whether a directed graph is a distributive lattice is gi

ven in Corollary 4. 

It was shown in 153, see also t43 that 

(0) X(n)2T (1 + o(l))8~1/2n3/2 

and it follows by a result of W.G. Brown - see e.g. tl, § 12J 

that 

p 3 3 < n ) Z ( l • o ( D ) | n 5 / 3 

We conjecture tha t the e q u a l i t y holds in ( 0 ) . 

Now we prove 

Theorem 5: Let a ,b be given pos i t i ve in t ege r s and e =• 

= a±fc£ t h e n 

p a b ( n ) r c LjJ for n s u f f i c i e n t l y la rge and 

absolute constant c 

'L-

(Here we show c - lPil«r+3,J- , where e - 2,71 .... 

is the base of natural logarithm but shall not make any at

tempt to find the beat c with the above property.) 
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Note t h a t the above theorem improves the i n e q u a l i t y 12.1 i n 

C13. 

In the proof of the above theorem we s h a l l use the f o l 

lowing theorem of J . Spencer, which i s a consequence of a 

theorem of L. Lov6sz - see 163 . 

F i r s t we introduce the following n o t i o n s : Let i l be a 

p r o b a b i l i t y space and A l f A 2 , « . - , A n e v e n t s . The graph r with 

ver tex s e t 4 l , 2 , . . . , n ^ i s ca l l ed dependence graph of 

4 A l f A 2 , . . . , A n £ i f A i , j ] 4 P i f f &± and Aj are mutually inde

pendent . P^A^) i s a p r o b a b i l i t y of A i# The following i s an 

easy consequence of Theorem 1.3 from t 6 3 . 

Theorem 6: Let AL, Bjr ( L e i , K e % ) be events i n a 

p r o b a b i l i t y space ~Q- with dependence graph P # Let N(L,3C) 

be the number of v e r t i c e s of type % adjacent i n P to a ve r 

tex corresponding to L. Set NAB = max {N(L f3C); h&^tl and 

l e t If^, NBA, NBB be defined analogously. Suppose t ha t to each 

event AjCBg) there i s assoc ia ted some y L =- y (zK * z) such t h a t 

yP(AL)< 1, zPCBj-)^ 1 

iny>yP(AL)NA A • ^ \ ^ k B 

inz>yP(A L )N B A • zPCBj^tfgg 

then 

Here by "A we denote the event complementar to A. 

Proof of The ore, m 5: We employ the p r o b a b i l i s t i c method. 

Sfcppose, we are given pos i t i t e i n t e g e r s a ,b (without l o s s of 

g e n e r a l i t y assume a > b > 2 ) . For a given s u f f i c i e n t l y l a rge n 

( t h i s w i l l be spec i f i ed l a t e r ) l e t <B be a random subset of 
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V 1 * V 2 ( V l j V 2 a r e d i s ^ o i n t 9 e t a l v l l = * v 2 l s s J -§ - ' e m ) ' whe~ 
re the elements of <C (arcs ) are chosen independent ly, each 

with p r o b a b i l i t y p = ĉ m"" where £= \ , and c^ = " r o ao- l o 

- t O . l f - - ^ ^ . Set 

% =tv1] axCv23bu Cv1]bx Lv2la 

(where Cv/ | denotes the se t of a l l a-element subsets of V.; 

[V.j3b i s defined s i m i l a r l y ) , and % = V-̂  * 

To every L € ^6 ( i . e . to pa i r (S,T) € £6 ) a s soc ia t e the event 

AL, t ha t S x T <z & . S imi l a r l y to every K e X ( i . e . to veV._) 

a s soc ia t e the event BK t h a t the number of arcs of & inc ident 

to v i s at most ^ - here e = 2 , 7 1 . . . i s the base of n a t u r a l 

logar i thm. 

Then we have 

(1) PU L ) = p a b for every h e X 

and 

(2) P(BK)^ exp r . ( | - l )pmJ 

(2) follows by Cherno££ i n e q u a l i t y (see t l 3 , 3.7 ) using e l e 

mentary computation 

(P(BK) = ^ ( p p J ( l - p ) f f i " ^ e x p [ ( m - k ) l o ^ § f i ) ^ k log f&] *£ 

£ e x p [ C | - Dpm3 

for k = [ f l j ) 

Let H be now a p r o b a b i l i t y space with events AL, L B £6 and 

BK , K e X and l e t N.^ , N.^ , NQA, Ngg be the numbers defined 

in Theorem 6. Then 

•в**(Й)(ь) + (: ) (Й )< 15ГБГ (- + ь) 
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^AB ~ ^ a x ^ a *b^ = a 

The theorem s t a t e s now: i f t h e r e e x i s t p o s i t i v e y,z such 

к в в = 0 

t h a t 

(3) yP(AL)< 1, z P ( B K ) < l 

2ab c a b 
( 4 > ^>СвПь-1П УШ^-2-аЬ, + а 2 е х р [ С о ( | _ 1 ) ш 1 - ^ 

(a+b) ab 
C 5 ) ^ . ^ ^ - y m a + b - l - a b £ 

then the re e x i s t s G € <& such tha t 

i ) the valency of a r b i t r a r y ver tex v €-V, i s more than 

^ ml~e 

e m 

i i ) S x T i s not a subset of G for any choice of ( S , T ) e 

6 26 . 

Set y s 1,1 

z = exp HO,2 c ^ 1 " ^ 
o u ab 
2 a b co 

c l ~ ( a - D H b - D ! y 

(a+b) 

then ( 3 ) , ( 4 ) , ( 5 ) become 

( 3 ' ) 1,1 p a b < l , exp [ c 0 ( f - | ) m 1 " " 6 ] < l 

( 4 ' ) i n l . l ^ c / % a exp L c Q ( | - | ) m1"6] 

( 5 ' ) O ^ m 1 " ^ c2 c a b m1"* 

which i s s a t i s f i e d for m?m (a ,b ) (where m (a ,b) i s an abso-

ute constant depending on a and b only) 
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It follows now from (i) and (ii) that there exists G e ^ 

which fulfils <PC43CQ ^f 3Cb J) andfmoreover, has more than 

C p-fi, 

- p m a r c s . This proves our Theorem. 

I t follows from (0) tha t p o ~ ( n ) z ( l * o ( l ) ) 8 ~ 1 / 2 n 3 / ' 2 

This can be s l i g h t l y improved, as shown by the fol lowing 

P r o p o s i t i o n 7 * 

pQ „ ( n ) > ( l • o ( l ) ) 2 \ / n 3 ^ j 3 , 
a » 2 V (L\TaJ • 2 ) 3 

We omit the tedious proof which is based on the convenient 

modification of the digraph, used in I4J for the proof of (OK 
3/2 

Note that the above p ropos i t ion shows p ?~ c a where 

c —> 2 as n —> oo . However, in Theorem 9 we show p 2 ~ 

~ ca n where c ' tends to i n f i n i t y as a—> oo . We be l ieve 

t ha t the upper bound i n Theorem 9 i s c loser t o t rue and 
1/2 conjec ture : pQ 9 (n ) = (1 • o ( l ) ) d Q n where lim dft « oo a ,<-. a <->--̂ ro 9 

(6) Theorem 8: p o K (n) -*nb • ( a - l ) 1 / b n2*"1 / b 

a, D 

Proof: Let (X,£:) be an ordering with the property 

^ ^ ^ a b'^b sV such that 'X^ ~ n# Let xi>x2»***>xn ** in" 

degrees of all vertices of (X,R) = Red(X,^K Since every sub

set Z of X with Izt ss b can be contained in at most a-1 neigh

borhoods of vertices of X we have 

.§,(?)*<-->(!.) 
Using elementary computation this can be converted to (6) (as 

m> 
pa,b(n) ^ I M * ! * 

For b = 2, we can strengthen the above theorem. Namely, we 
prove the following: 
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J/2 pa 2(n)^(l + o(l))^ \fs - 1 n1 

Proof* Let €-n denote the minimal number such that re-

duct of every ordering (Xf-&), I Xl - n having property 

©£ Q 9 $?-> 3^ a>l has at most a,£, «< ,a 

Pa,2(n) " (1+ e^f^^^n 3/ 2 

arcs. We show that lim £„ " 0. Let 1 > e > 0 be given and 

let (X,^ ) be an ordering with property $(i% ^fy J). Suppose 

that X =- -tC,l,... ,n-l4 and that the natural order of integers 

extends that of (X,£). 

Set (X,R) = Red(X,£); we show.that 

I R | £ ( l * e n ) | \Za~T~I n
3 / 2 ^ ( l • e )§ \/a - 1 n 3 / 2 

i f n i s la rge enough. 

Let x
0 > x x>»••> x n- l ^ e indegrees of v e r t i c e s 0 , 1 , 2 , . . . , n - l . 

Set m =- oOn, where 06 = y-r , and for j , m ^ j < n l e t the number 

of arcs of the form ( i , j ) , 0 - ^ i ^ m - l be denoted by y , ; the num-
J 

ber of arcs of the form ( i , j ) , m-=i be denoted by Zy 

Then, analogously, as in Theorerr 8, we have 

.?.(?)•,?:(?)*•-"U") 
and hence 

m**+ - 2 ^ - 2 2 

&> x i ^ f w yj ~ (a - l ) m 

where x^ = x^ - 1 and y^ = y , - l 

Se t 1 
TIL-A 

. £ 0 ( x t ) 2 - tf2(a - Dm2 * 3 2 U - l ) o : 2 n 2 

Then 

3 R L y2--<i - s 2 ) » 2 ( 3 - i ) 
As the number of arcs of (X,R) ±3 ^0

XX * Jr<m, ( y j * V 
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we have by Cauchy-Schwarz inequality that 

| R U n • 6 V V ^ l m 3 / 2 • (1 - G 2 ) I / 2 \ / a ~ ^ l (n - m) l / 2 m 

» N/SKL (1 • e n _ m )§(n-m) 3 / 2 .£ n • 

• V ^ l n3/2CoG + | ( l + e n ^ m ) ( l - o 6 ) 3 / 2 ) 

1/2 because by an easy computation 0 -=• €f &cc • 

Thus we get 

(7) p a 2(n) .£ n + Va-1 oc: n J / c • pQ 2 - ( ( l -oc)n) 

Moreover, by Theorem 8 

(8) p - < n ) * 2 n • V l a ^ D n 3 / 2*r 2 \/a--l n 3 / 2 

a, - . 

for ni:n 

Let n be so large that 

(9) § n 3 / 2 * ( 2 n 0 ) 3 / 2 , S * f n ^ / i - I 

and let t be the largest integer that 
(10) Cl -o^)tn>nQ 

(11) Then we have c l e a r l y ( l -<*) n£2n 

Combining ( 7 ) , ( 8 ) , ( 9 ) , ( 1 0 ) and (11) we get 
*-* , , V : > •£-* 13/2 

p a 2 (n ) ^ i ^ 0 ( l - 0 6 ) x n + \ / a - l e*n J / * 22 (1-oc) + 

• PQ o C d - o & ^ n ) * * •\ZS-5. n 3 / 2 ^ — + 
a ' ^ l - ( l -<* ; ) J / < i 

• 2 \ ^ - l ( l - o d t 3 / 2 - n 3 7 2 ^ * 2 \ / a ^ i ( 2 n 0 ) 3 / 2 • 

• ^ ^ ^ l - d - 3 ^ ( ^ ) c 6 2 > ~ 

* ( t * I * 3 / / - Vftoc ) ̂  n3/2< (1*&)§ ^ n3/2 
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The first inequality is obtained by t-1 iterations of ( l ) . 

Notice that in the proofs of Theorems 8 and 9 we used 

only facts that the ordering (Xft£) fu l f i l s either IPK.JC Q bJ 

or (pK3Ch Q } ) . Thus the following holds: 

Corollary 1Q: For every a,b2 ,2, a>b 

P « X a > b l ) ( n ) » P«^b ^)<n)^nb + ( a - l ) 1 / b n 2 ~ 1 / b 

p t f# a 2 * ) ( n >
f p ^ },(n>-6(l + o(D) f V ^ ^ T n 3 7 2 

' 2fa 

Note: Theorems 8 and 9 hold also if , more generally, 

transitive reduct of ordered set i s replaced by the transiti

ve reduct of directed graph. 

We mention in closing one application of Theorems 3 and 8. 

We say that an acyclic directed graph has the property Df or 

L, or !P(Q) i f i t s transitive and reflexive closure is a d i s t 

ributive la t t ice , or a la t t i ce , or i t has the property (P(QJ» 

A directed graph has the property D, or L, or (P((^) i f i t s 

quotient graph by the decomposition into strongly connected 

components has the property D, or L or {PIG")* 

Corollary 11: If a directed graph (XfR) has the proper

ty D (or <tH%Q D t ^ 0 a$) tor aj-rb then there exists an al

gorithm constructing i t s transitive closure in OdXl »ldg X) 

(or 0(X3~1 / a)resp .) time. 

Corollary 12s If a directed acyclic graph (XfR) has the 

property D (or <P (i3CQ b»*^b a^ £or a ^ b t n e n * h e r e e x*sts 

an algorithm constructing i t s transitive reduct ( i . e . the 

transitive reduct of i t s transitive and reflexive closure) in 
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0C|X| 2 log | X | ) , (or 0 C ( X | 3 " i / a r e s p . ) t ime. 

The proof follows from Theorems 3 and 8 i f we use the 

r e s u l t i n [ 3 1 . 
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