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COMMENTATIONES MATHEMAT1CAE UNIVERSITATIS CAROLINAE 

23,1 (1982) 

ON RECURSIVE MEASURE OF CLASSES OF RECURSIVE SETS 
A. KUCERA 

Abstrac t : I t i s shown tha t any cla93 of recur3 ive s e t s 
^ h ( n ) where h i s a funct ion of degree â such tha t 
auO.£0,M has O-measure zero (O-measure i s a recurs ive ana lo
gue of the product measure on r ) i 

Key words: Recursive s e t , r ecu r s ive ly enumerable s e t , 
degree . 

C l a s s i f i c a t i o n : 031)30, 03F60 

I t i s known tha t the recurs ive s e t s are not uniformly 

r e c u r s i v e . C. Jockusch C4, Theorem 9J observed t h a t there i s 

a funct ion h of degree £- a such tha t 9 n (o)> ^ h ( l ) , , # # a r e 

prec i se ly the recurs ive s e t s i f f aug 'zr jO". In t h i s paper we 

prove tha t any clas3 of recur3ive s e t s - i ^ n ( n ) : n e N? where h 

i9 a funct ion of degree ££* such that a u O ^ 0 ^ ' even has 0,-

mea3ure zero . The concept of O-measure i s an e f fec t ive ana-
N logue of the product measure on 2 • I t was introduced by 0 . 

JDemuth [1] for cons t ruc t ive r e a l numbers and plays the impor

tant r o l e in cons t ruc t ive mathematical analysi9 ( s e e , e . g . , 

L 2 1 ) . 

Our no t a t i on and terminology are s tandard . In p a r t i c u 

l a r we uae the l e t t e r s i , . j , k , n for elements of N =- - tO f l y . *•! • 

We iden t i fy sub9et3 of N with t h e i r c h a r a c t e r i s t i c f u n c t i o n . 
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A string is a finite sequence of 0 s and 1 s. Strings may 

also be viewed as functions from finite initial segments of 

N into -fOflJ. We use the letters e', f for strings, £h(6) 

is the length of <o and 6̂  * <£ is the string which results 

from concatenating € and t; • A subset A of N extends & 

(A 2 *z ) if the characteristic function of A extends 6̂  . 

We assume that the set of all strings is effectively Godel-

numbered so that we can apply notions of recursion theory to 

strings. For functions f, g we say that f dominates g if 

f (n)2* g(n) for all but finitely many n. Let 9 n be the n-th 

partial recursive function in some standard enumeration of 

all partial recursive functions. 

We shall use the Martin s result 16} that there is a 

function f of degree a which dominates every recursive func

tion iff a'rO". We shall also use the following straight

forward modification of the result. 

Lemma: for any degree b and for any class A = ^ 9 h ( n )
: 

:ne N? of recursive functions where h is a function of deg

ree ^.b' there is a function f of degree -£ Jb which domina

tes all functions of A « 

We shall use a special case of the concept of O-measure 

(see til). 

Definition: A class A of subsets of N has O-measure 

zero if there exist a recursive sequence R ,R^,... of r.e. 

sets of strings and a recursive sequence y^y^,... of const

ructive real numbers (i.e. recursive reals) such that for 

every n 

1) the real number 2 2~^ h ( 6^ is equal to yn and yn*-
2~n» 
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2) for any set A, A e Jl , there is a string 6% 6 c lnf 

such that 6 £ A. 

It should be noted two important facts in the defini

tion: 

i) g^R ^ ^s ^QQ^i1*6^ *° be equal to a constructive 
•TV 

real number for every n, 

i i ) J o t y ^ i . - . i s requi red to form a r ecurs ive sequence. 

Zas lavsk i j and Cej t in £81 proved tha t the c lass of a l l 

r ecur s ive s e t s has ^-measure equal to 1. More information 

on the ro l e of O-measure and some survey of cons t ruc t ive ma~ 

thematical analysis can be found in £21. 

Theorem: I f a i s a degree such tha t a u f l ' | ; 0W then any 

c l a s s of r ecu r s ive s e t s i *g^nj : n e N i where h i s a funct ion 

of degree £ a has O-measure ze ro . 

Proof. I t follows from 181 or from £51 t ha t there i s a 

r . e . se t S of s t r i n g s such tha t 

1) J £ c 2"ihid) is less t h a n i f 

2) for every r ecu r s ive s e t A the re e x i s t s a s t r i n g 6% 6 t 

€ S f such t ha t € & Af 

( i . e . there i s a r ecurs ive binary t r e e T without i n f i n i t e r e -

cursive branches such tha t the usual product measure on 2 

of the c lass of a l l i n f i n i t e branches of T i s g r e a t e r than 

4 ) . I t should be noted tha t the r e a l number JEL 2 ~Jn(^) l s j 

r ecu r s ive i n 6 but i t cannot be equal to any cons t ruc t ive 

r e a l number (see £81). 

Let s
0 i % t * » « be a r ecu r s ive sequence of r . e . s e t s of 

s t r i n g s such tha t for every n Sn>rl »•£ tf * r : # e SR &re SQ1 . 
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Let 4 $n k
:k€N^ be a recursive enumeration of Sn for eve

ry n (all Sn are, of course, infinite). It is easy to verify 

that 3SL 2-*hi^2-iTi+l) for all n. 

Further, for any recursive set A we can effectively 

find a recursive function oC such that for all n ^-^nj&in)* 

So, let g be a recursive function such that if 9 n is a re

cursive set then <*> 3 g . , , for all k, n. Now let a be 
T n k^g\n)ik) 

a degree such that auO'| 0M and h be a function of degree £JJ 

such that ^^hC^^^Nl is a class of recursive sets. We use 

the function g described above to form the class of recursive 

functions S= 4. a?g^) -n€ Nj. The function gh is obviously 

of degree t£ a. By the theorem of Friedberg [33 (or 17.1 § 

13.3 ) there is a degree b, such that b,' = au^'. By the lem

ma there is a function f of degree -6£ which dominates all 

functions of the class J?> . Since %% On
 f there is a recursi

ve function cf which f fails to dominate. Thus, for all n, 

(f'n(n)(k) £ <f(k) for infinitely many k. By the properties- of 

g « have c,h(n) 3 * k f V i n ) {K; -« --- -• - ^ V * ! - " 

be a recursive sequence of r.e. sets of strings such that for 

every n ft » -f̂ L .:k^n & j^t^Ck)i. It follows that for 
n K.f j 

all i, n there is a string o & Rn such that 9>n(4) -̂  ̂  • 

Further, it is easy to construct a recursive sequence of con

structive real numbers y^y^,... such that for all n 

^ R ^ 2 ' ^ ^ is e q u a l t 0 ̂ n md yn^2~n* 
Thus, the class ^ h ( n ) : n e N ? has £-measure zero. 
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