Commentationes Mathematicae Universitatis Caroline

Eva Butkovičová
 Ultrafilters without immediate predecessors in Rudin-Frolík order

Commentationes Mathematicae Universitatis Carolinae, Vol. 23 (1982), No. 4, 757--766
Persistent URL: http://dml.cz/dmlcz/106194

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ULTRAFILTERS WITHOUT IMMEDIATE PREDECESSORS
 IN RUDIN-FROLIK ORDER
 M. BUTKOVIČOVA

```
Abstract: Wo desoribe a oonstruction of an ultrafilter on the set of natural numbers not belonging into the olosure of any countable disorete set or minimal ultrafilters in Rudin-Froik order of \(\beta N-N\). We use the teohnique of independent linked family developed by K. Kunen.
Key worde: Ultrafilter, Rudin-Frolik order, independent linked fanly, etratified eet.
Classifioation: 04 A 20
§ 0 . Introduction. Petr Simon has raised the following question known as Simon's problem [1] : Does thore exist a nonminimal ultrafiltor in Rudin-Frolik ordor of \(\beta N-N\) (shortly writton RF) without an immediate predeoessor ?
Let us oall avoh an ultrafilter Simon point.
Two simple lemase translate the property "boing a Simon point" into the topological terminology.
Loma 0.1: An ultrafiltor \(p \in \beta N-N\) is nomainimal in RF iff there exists a countable disorete set \(X \subseteq \beta N-N\) of ultrafilters such that \(p \in \bar{X}-x\).
Lomma 0.2: An ultrafiliter \(p \in \beta N-N\) ha: an immediate predecessor in RF iff there exists a countable disorete set \(X\) of minimal ultrafiliters in RF woh that \(p \in \bar{X}-X\).
Therefore, simon point \(p\) is an ultrafilter in \(\beta N-N\) for whioh there exists a countable disoretp set \(x\) such that \(p \in \bar{X}-X\)
and if \(Y\) is a oountable disorete met of minimal ultrafilters in \(R F\) then \(p \notin \bar{Y}\).

The main result we want to present is the following
THEOREM. There exists a Simon point in \(B N-N\).
One can easily see that a Simon point \(P\) has to be in the closure of a countable discrete set of Simon points \(X_{1}\). Since each point of \(X_{1}\) is a Simon point, there exists a countable discrete set \(x_{2}\) of simon points such that \(x_{1} \subseteq \bar{x}_{2}-x_{2}\), and so on. Therefore, we shall construot countably many countable disorete sets \(X_{n}, n \in \mathcal{N}\) of simon points such that \(X_{m} \subseteq \bar{X}_{n+1}-X_{m+1}\).

The original proof of Theorem needed the assumption that every set of functions from \({ }^{\omega} \omega\) of cardinality smaller than \(2^{x_{0}}\) 1s bounded modulo fin. We are grateful to Petr Simon who mas suggested us to use Kunen technique of independent linked family [3] to avoid this assumption.

We would like also to thank Lev Bukovsky for his manifold help and enoouragement.
\(\S\) 1. Preliminaries. We shall use the standard notation and terminology to be found e.g. in [4], [1]. If \(\mathcal{F}\) is a filter then \(\mathscr{F}^{*}\) is the dual ideal. If \(G\) is a centered system of sets then ( \(G\) ) denotes a filter generated by this system. \(F\) refers to the Fréchet filter.

Definition 1.1: due to K. Kunen [3]. Let \(\mathcal{F}\) be a filter on \(N\) and \(\mathcal{F} \supseteq F, A_{\eta} \subseteq N\).
a) Let \(1 \leqslant n<\omega\). An indexed family \(\left\{A_{\eta} ; \eta \in J\right\}\) is precisely N-linked with respeot to (w.r.t.) \(\mathcal{F}\) iff for all \(\sigma \in[J]^{n}, \bigcap_{\eta \in \sigma} A_{\eta} \notin \mathcal{F}^{*}\), but for all \(\sigma \in[J]^{m+1}, \bigcap_{\eta \in \sigma} A_{\eta}\) is finite.
b) An indexed family \(\left\{A_{\eta n}, \eta \in J, n \in \omega\right\}\) is a linked
system w.r.t. \(F\) iff for each \(n,\left\{A_{\eta n} ; \eta \in J\right\}\) is preaisely \(m\)-linked w.r.t. \(\mathcal{F}\), and for each \(N\) and \(\eta, A_{\eta m} \mathscr{S}_{\boldsymbol{i}} A_{\eta+1}\).
o) An indexed family \(\left.\left\{A \eta_{n}\right\} ; \eta \in J, \xi \in I, N \in \omega\right\}\) is a \(J\) by \(I\) independent linked fandiy (ILF) w.r.t. \(\mathcal{F}\) iff for oach \(\xi \in I\). \(\left\{A_{\eta n}^{\xi} ; \eta \in J, w \in \omega\right\}\) is a linked system w,r,t, \(\mathcal{F}\), and \(\bigcap_{\xi \in \tau}\left(\bigcap_{z \in \sigma_{\xi}} A_{z N_{\xi}}^{\xi}\right) \notin \mathcal{F}^{*} \quad\) whenever \(\tau \in[I]^{<\omega}\), and fox each \(\xi \in \tau^{3}, 1 \leqslant N_{\xi}<\omega \quad\) and \(\sigma_{\xi} \in[J]^{N}{ }_{\xi}\).

Remark 1.2: If \(\{A \xi \in ;\{\in I, \eta \in J, n \in \omega\}\) is indeponiont linked family w.r.t. \(\mathcal{F} \supseteq F, C \in \mathcal{F}, \tau \in[I]^{<\omega}, \sigma_{\xi} \in[]^{\leqslant \pi}\) and \(B \supseteq \bigcap_{f \in \tau}\left(\bigcap_{\eta \in \sigma_{\xi}} A_{\eta n_{\xi}}^{\xi}\right) \cap C \quad\), then \(\left\{A_{\eta n}^{\xi} ; \xi \in I-\tau, \eta \subset J, n \in \omega\right\}\) is independent linked family w.r.t. \((\mathcal{F} \cup\{B\})\).
K.Kunen [3] has also proved the followirus

Proposition 1.3: There exists a \(2^{\omega}\) by \(2^{\omega}\) independent linked family w.r.t. Freohet filter.

Definition 1.4: A countable set \(\left\{\mathcal{F}_{n} ; n \in \omega\right\}\) of filters on \(\omega\) is discrete iff there exists a partition of \(\omega\) (into disjoint sets) \(\left\{A_{m} ; n \in \omega\right\}\) such that \(A_{n} \in F_{n}\) for each \(w \in \omega\).

Definition 1.5: A filter \(\mathcal{F}\) is in a closure of a discrete set of filters \(\left\{\mathscr{F}_{n} ; n \in \omega\right\}\) iff for each \(A \in \mathcal{F}\) the sot \(\left\{m \in \omega ; A \in \mathscr{F}_{n}\right\}\) is infinite.

Definition 1.6: A set of filters \(\left\{\mathcal{F}_{n, m} ; N, m \in \omega\right\}\) is stratified iff
(1) the set \(\left\{F_{n, m} ; m \in \omega\right\}\) is discrete for each \(N \in \omega\),
(2) the filter \(\mathscr{F}_{n, m}\) is in the closure of the set
\(\left\{F_{n+1, l} ; l \in \omega\right\}\) for each \(n, m \in \omega\).
Definition 1.7: Let \(\left\{\mathcal{F}_{n}, m ; N, m \in \omega\right\}\) be a stzatified set of filters and \(C\) be its subset. We define
\(C(0)=C\)
\(C(\alpha)=\bigcup_{\text {Bra }} C(\beta)\), if \(\alpha\) is ismit.
\(C(\alpha+1)=C(\alpha) \cup\left\{\mathcal{F}_{m, m} ; \exists B \in \mathcal{F}_{N, m}\right.\) suoh that
\[
\left.\left\{\mathcal{F}_{m+1, e} ; B \in \mathscr{F}_{m+1, e}\right\} \subseteq C(\alpha)\right\}
\]
and \(\tilde{\mathcal{Z}}=\bigcup_{\alpha<\omega_{1}} C(\alpha)\).
We shall noed the following result proved by M. \(\mathbf{x}\).Radin [4].
Leman 1,8: If \(X, Y\) are oountable disorote aets of ultrafiltore and \(p \in \bar{X} \cap \bar{Y}\) then \(p \in \overline{X \cap Y} \cup \overline{X \cap(\bar{Y}-Y)} \cup \overline{Y \cap(\bar{X}-X)}\).
§ 2. Construotion of a stratified sot. The proof of Theorem will be done via a construction of a stratified set of ultrafilters with properties desoribed in the following proposition.

Proposition 2.1: Thore oxists a stratiriod set of ultrafiliter \(\left\{q_{n, m} ; N_{1} m \in \omega\right\}\) on \(\omega\) satimfyine for each partition \(\left\{D_{i} ; i \in \omega\right\}\) of \(\omega\) the following property ( \(\mathbf{P}\) ): Let \(C=\left\{q_{n, m} ;(\exists \dot{\alpha} \in \omega)\left(D_{i} \in q_{n, m}\right)\right\}\). If \(q_{k, e} \notin \tilde{C} \quad\) then there oxiste a fanily \(\left\{u_{\alpha} ; \alpha \in \mathcal{Z}^{\omega}\right\} \leq q_{1, e}\) suoh that for sooh \(i \in \omega\) and for eaoh \(\alpha_{1}<\alpha_{2}<\ldots<\alpha_{i}, \quad u_{\alpha_{1}} \cap u_{\alpha_{2}} \cap \ldots \cap u_{\alpha_{i}} \cap D_{i}\) is finite.

For to prove the proposition we noed some auxiliary results.

Lompa 2.2: If \(\left\{\mathscr{F}_{m, m} ; n_{i} m \in \omega\right\}\) is a stratifice set of filters, \(\left.\mathcal{C t}=\left\{A_{\eta}^{\xi} ;\right\} \in I,|I|>\omega, \eta<\chi^{\omega}, k \in \omega\right\}\) is ILF w.r.t. \(\Psi_{n, m}\) for every \(m, m \in \omega\) and \(B \subseteq \omega\) then thare oxiste a stratified set of filters \(\left\{\overline{\mathcal{F}_{n, m}} ; \pi, m \in \omega\right\}\) and
\(\bar{C}=\left\{A_{i \&}^{\xi} ; \xi \in \bar{I}, \eta<2^{\omega}, k \in \omega\right\}\) an \(I L F w_{0} x, t\). \(\overline{F_{m i m}}\) for eaok \(n, m \in \omega\) suoh that \(\overline{F_{n, m}} \geq \mathcal{F}_{n, m}\), B ox \(\omega-B\) belonge into \(\overline{F_{m i m}}, \bar{I} \subseteq I\) and \(I-\bar{I}\) ia countable.

Proof. Let us oonaider the eet \(C=\left\{\mathcal{F}_{i, j} ;\right.\) of is not ILF w.r.t. \(\left.\left(F_{i, j} \cup\{B\}\right)\right\}\). If \(F_{i, j}\) belonge to the set \(C\) then there oxlst sote \(\tau_{i, j} \in[1]^{<\infty}\) and \(E \in \mathcal{F}_{i, j}\) auoh that \(B \cap E \cap \bigcap_{f \tau_{i, j}} \bigcap_{i \in \sigma_{j}} A_{\eta \varepsilon_{\xi}}^{\xi}=\emptyset\), i.e. \(\omega-B \supseteq E \cap \bigcap_{f \in \varepsilon_{i, j}} \bigcap_{z \in \sigma_{\xi}} A_{\eta a_{j}}^{\xi}\).
Erldently \(\left\{A_{\eta k}^{f} ; \xi \in I-\tau_{i, j}, \eta<2 \omega, k \in \cos \right\}\) is ILFW.w.t. \(\left(\mathcal{F}_{i, j} \cup\{\omega-B\}\right.\) ).

We denote \(\bar{I}=I-U\left\{\tau_{i, j} ; \mathcal{F}_{i, j} \in C\right\}\). Tharefors,
 \(\left(F_{i, j} \cup\{\omega-B\}\right)\) for \(F_{i, j} \in C\). If \(\mathcal{T}_{A, \ell} \notin \hat{C}\) then \(\bar{A}\)


It remaine to show that of ia TLF v.r.t. ( \(\mathcal{F}_{\text {l, }, ~} \cup\{\omega-B\}\) ) if \(\mathcal{F}_{h, l} \in \tilde{C}-C\). Suppose the opposite in oxder to get a oontradiotion. Let \(B\) be the leant oxdivil euoh that
 Hence thore axist note \(E \in \mathcal{F}_{A, C}\) and \(\tau \in[\overline{1}]^{c} 0\) matiarying
 and \(\mathcal{F}_{A+1, t} \in C(B-1)\). There extete suoh a filter. TY.en if is not Lus w.r.t. ( \(\left.F_{h \rightarrow 1, t} \cup\{\omega-B\}\right)\). This is a cminaliotion with the minimailty of \(\beta\).

Aocoming to the foregoting ditacusion we cenote


Lemma 2.3: If \(\left\{\mathcal{I}_{n, m} ; n, m \in \omega\right\}\) is a stratified set of filters, \(\left.\left.A=\{A\}_{k} ;\right\} \in I, \eta<2 \omega, k<\omega\right\}\) is ILFw.r.t. \(\mathcal{F}_{n, m}\) for each \(n, m \in \omega\) and \(D=\left\{D_{i} ; i \in \omega\right\}\) is a partition of \(\omega\) suoh that \(D_{i}\) or \(\omega-D_{i}\) belongs into \(\mathscr{F}_{m, m}\) then there exists a stratified set of filters \(\left\{\widehat{\mathscr{F}}_{n} m ; m, m \in \omega\right\}\) and \(\widehat{A}=\left\{A_{\eta k}^{\xi} ; \xi \in \hat{I}, \eta<2^{\omega}, \ell<\omega\right\}\) an ILF w.r.t. \(\widehat{f}_{n, m}\) for each \(n, m \in \omega\) such that \(\widehat{\mathscr{F}}_{n, m} \supseteq \mathscr{F}_{n, m}\), \(\widehat{F}_{n, m}\) possesses the property (P) for the partition \(D, \widehat{I} \subseteq I\) and \(I-\widehat{I}\) is finite.

Proof: Let us consider the set
\(c=\left\{\mathcal{F}_{j, \ell} ;(\exists i \in \omega)\left(D_{i} \in \mathcal{F}_{j, \ell}\right)\right\}\).
If \(\mathscr{F}_{s, t} \in \widetilde{C}\) we put \(\widehat{f}_{s, t}=F_{s, t}\).
Let \(\mathscr{F}_{s, \xi} \notin \widetilde{C}\). Take \(\xi \in I\) and define (similarly as K.Kunen does)
\(u_{\eta}=\bigcup_{k \in \omega}\left(A_{\eta k}^{\}} \cap D_{k+1}\right), \hat{I}=I-\{B\}\)
and \(\left.\widehat{\widehat{F}}_{s, t}=\left(\mathscr{F}_{\text {s,t }} \cup\left\{u_{\eta} ; \quad\right\}<2^{\omega}\right\}\right)\).
\(U_{\eta} \geq A_{\eta k}^{\xi} \cap \bigcap_{i \leq k}\left(\omega-D_{i}\right)\), therefore \(\hat{\mathcal{A}}\) is ILF w.r.t. \(\widehat{\mathscr{F}}_{s_{i}, t}\).
To verify the property (P), let \(\beta_{1}<\beta_{2}<\ldots<\beta_{i}<\mathcal{Z}^{\omega}\).
The set \(U_{\beta_{1}} \cap U_{\beta_{2}} \cap \ldots \cap U_{B_{i}} \cap D_{i} \quad\) is a subset of \(A_{\beta_{1} i-1}^{\S} \cap A_{\beta_{2} i-1}^{\S} \cap \ldots \cap A_{\beta_{i}}^{\xi} i_{-1}\) which is in fact finite.

The set \(\left\{\widehat{f}_{m, m} ; n, m \in \omega\right\}\) is stratified by the defintition of \(\tilde{C}\).
q.e.d.

\section*{Proof of Proposition 2.1. We construct ultrafilters}
\(q_{n, m}, m_{1} m \in \omega\) by the transfinite induction in \(2^{\omega}\) stages. At each stage \(\alpha<2^{\omega}\) we will oonstruot filters \(\mathcal{F}_{\boldsymbol{m}, m}^{\alpha}\)
and \(q_{n, m}=\bigcup_{\alpha<2^{\omega}} \mathcal{F}_{n, m}^{\alpha}\). At the oven stages wo ensure that nim's become ultrafilter and at the odd stages we ensure that \(q_{n, m}\) 's will not belong into the closure of any countable discrete set of minimal ultrafilters. Simultaneously, at each stage we ensure that \(q m_{1} m\) will belong into the closure of the set \(\left\{q_{n+1, \ell} ; \ell \in \omega\right\}\).

Let \(\left\{B_{\alpha} ; \alpha<Z^{\omega}, \mathcal{L}\right.\) even \(\}\) enumerate all subsets of \(\omega\) and \(\left\{D_{\alpha} ; \alpha<2^{\omega}, \mathcal{L}\right.\) odd \(\}\) emmerate all partitions of \(\omega\), \(D_{\alpha}=\left\{D_{\alpha i} ; i \in \omega\right\}\), in such a way that each partition occurs \(2^{x_{0}}\) many times in this emmeration.

Let \(\left\{A \eta_{\ell}^{\xi} ; \xi<2^{\omega}, \eta<2^{\omega}, k<\omega\right\}\) be independent linked family w.r.t. Fróohet filter F .

For each \(\xi\), the system \(\left\{A_{\eta}^{\xi} ; \eta<2^{\omega}\right\}\) is almost disjoint. Put \(B_{1, m}=A_{m 1}^{1}-\bigcup_{j<m} A_{j 1}^{1}\). Let \(\left\{C_{n ; n} \in \omega\right\}\) be a fixed partition of \(\omega\) on infinite sets. Suppose \(B_{m, m}\) is defined for each \(m<\omega\). Put \(B_{m+1, m}=B_{m, l} \cap\left(A_{m+1}^{m+1}-\cup_{j<m} A_{j 1}^{m+1}\right)\) af \(m \in C_{l}\). For each \(n \in \omega\), the system \(\left\{B_{n, m ; m \in \omega}\right\}\) is pairwise disjoint.

Let \(F_{n, m}^{0}\) be a filter generated by \(F \cup\left\{B_{n}, m\right\} \cup\) \(\cup\left\{\omega-B_{n+1, l i} l \in \omega\right\}\) for each \(m, m \in \omega\) and \(I_{0}=2^{\omega-\omega}\).

The set \(\left\{A_{\eta}^{\xi} ; i \xi \in I_{0}, \eta<2^{\omega}, k<\omega\right\}\) is ILP w.r.t. \(g_{n, m}^{0}\) for all \(n, m \in \omega\) according to Remark 1.2. (For each \(B \in \mathcal{F}_{n i m}^{0}\) there exist \(G \in F\) and \(A_{\eta j 1}^{j}, j \leq n+1\) satisfying \(B \supseteq G \cap_{j \leq m+1} \cap_{\eta_{j} 1}^{i}\) ). The rystem \(\left\{\mathcal{F}_{m, m}^{0 j} ; n, m \in \omega\right\}\) is evidently stratified.

By the induction on \(\mathcal{C}<2^{\omega}\) we construct filters \(\mathscr{F}_{n i m}^{\alpha}\) and an indexed set \(I_{\alpha}\) with following properties:
1) If \(\alpha\) is even, we put \(\xi_{m_{1}, m}^{\alpha+1}=\overline{F_{m, m}^{\alpha}}\) and \(I_{\alpha+1}=\overline{I_{\alpha}}\) (uating Lemma 2.2 where \(B=B_{\alpha}\) ).
2) If \(\alpha\) is odd, \(D_{\alpha}=\left\{D_{\alpha \dot{\alpha}} ; i \epsilon \omega\right\}\) is a partition of \(\omega\) and assume that:
(A) for each \(i \in \omega\) there exists \(\beta<\alpha, \beta\) oven suoh that \(D_{\alpha \dot{N}}=B_{\beta} \quad, \alpha\) being the first odd ordinal with this property. Hence for each \(i \in \omega\) we have \(D_{\alpha} \dot{j} \in \mathcal{F}_{m, m}^{\alpha}\) or \(\omega-D_{\alpha i} \in \mathcal{F}_{m, m}^{\alpha}\).
Then we define \(\mathcal{F}_{n, m}^{\alpha+1}=\widehat{\mathcal{F}}_{m, m}^{\alpha}, I_{\alpha+1}=\widehat{I}_{\alpha} \quad\) (uaing Lemma 2.3 where \(\mathscr{D}_{\alpha}=\mathscr{D}\) ).

If the oondition (A) doee not hold true, we eimply set \(\mathcal{F}_{n, m}^{\alpha+1}=\mathscr{F}_{n, m}^{\alpha}\) and \(I_{\alpha+1}=I_{\alpha}\).
3) If \(\mathcal{L}\) is a limit ordinal we set \(\mathcal{F}_{n, m}^{\alpha}=\bigcup_{\beta<\alpha} \mathcal{F}_{n, m}^{\beta}\) and \(I_{\alpha}=\bigcap_{\beta<\alpha} I_{\beta}\).

Finally wo put \(q_{m, m}=\bigcup_{\alpha<2 \omega} F_{n, m}^{\alpha}\).
It remains to show that the set \(\left\{q_{n}, m ; n, m \in \omega\right\}\) satiafies the property required in Proposition 2.1.

Clearly, this set is stratified.
Assume that \(D\) is a partition of \(\omega\). Since each partition of \(\omega\) ocours \(\mathcal{Z}^{\lambda_{0}}\) many times in the enumeration \(\left\{\mathscr{D}_{\alpha} ; \alpha \in \mathcal{Z}^{\omega} \mathcal{L}\right.\) odd \(\}\) there exists a suffioiently large odd \(\mathcal{L}\) suoh that \(g=\mathscr{D}_{\alpha} \quad\) and the condition (A) is fulfilied. Now, we denote \(C=\left\{q_{A, e} ;(\exists i \in \omega)\left(D_{\alpha i} \in q_{k, e}\right)\right\}\). If \(q_{n, m} \notin \tilde{C}\) and \(\mathcal{F}_{m, m}^{\alpha} \notin \widetilde{C}_{\alpha}\) where \(C_{\alpha}=\left\{\mathscr{F}_{m, e}^{\alpha} ;(\exists \dot{j} \in \omega)\left(D_{\alpha} i \in \mathscr{F}_{\pi, e}^{\alpha}\right)\right\}\) then the family \(\left\{u_{q} ; \eta<\mathcal{Z}^{\omega}\right\} \quad\) used in the construotion of \(F_{n, m}^{\alpha+1}\) aocording to the proof of Lemma 2.3 is the family desired by the proposition. Thus it mon. a to show that
for \(q_{m, m} \notin \tilde{C} \quad\) also \(\tilde{F}_{n_{1} m}^{\alpha} \notin \widetilde{C}_{\alpha}\).
In order to get a contradiction we auppose that there exists \(q_{n, m} \notin \widetilde{C}\) and \(\mathfrak{F}_{n, m}^{\alpha} \in C_{\alpha}(\beta)\) where \(\beta\) is the first ordinal with this property. Clearly, \(\beta \neq 0\). By the definition of \(C_{\alpha}(B)\), there exists \(B \in \mathscr{F}_{m, m}^{\alpha} \subseteq q_{m, m}\) such that \(B=\left\{\Psi_{m+1, e}^{\alpha} ; B \in \mathscr{F}_{m+1, ~}^{\alpha}\right\} \subseteq C_{C}(B-1)\). By the mindmality of \(\beta\), eaoh \(q_{m+1, e} e_{m+1, e}^{\alpha} \in B\) in an element of \(\tilde{C}\). This is a contradiction with the assumption of \(q_{n, m} \notin \tilde{C}\). q.e.d.
§ 3. Proof of the THEOREM. Now, we are ready to prove the main result. Theorem follow immediatelly from Proposition 2.1 and Lemma 3.1.

Lemma 3.1: If \(\left\{q_{n, m} ; n_{1} m \in \omega\right\}\) is a stratifiod set of ultrafiliters with the property ( \(P\) ) (of Proposition 2.1) then eaoh \(q_{n, m} ; n_{1} m \in \omega\) is a Simon point.

Proof: Since the set \(\left\{q_{m, m} ; m_{1} m \in \omega\right\}\) is stratifiod, each \(q_{m, m}\) is a nonminimal ultrafiltor.

It remains to show that \(q_{n, m} \notin \bar{D} \quad\) whenever \(\mathbb{D}=\{j i ; i \epsilon \omega\}\) is a oountable disorete set of minimal ultrafilters in RF, \(n_{i} m \in \omega\). Let \(\left\{D_{i} ; i \in \omega\right\}\) be a partition of \(\omega\) suoh that \(D_{i} \in j_{i}\) for sach \(i \in \omega\). Let \(C\) be as in Proposition 2.1. We show that \(\tilde{C} \cap \overline{\mathbb{D}}=\varnothing\). Clearly, \(c(0) \cap \overline{\mathbb{D}}=\varnothing\). We prooesd by induotion. Suppose that \(C(\alpha) \cap \bar{D}=\varnothing\) and there oxist \(i, j \in \omega\) suoh that \(q_{i, j} \in C(\alpha+1) \cap \bar{D}\). By Definition 1.7 there axists a set \(B \in q_{i, j}\) with property \(\left\{q_{i+1, e} ; B \in q_{i+1, e}\right\} \subseteq C(\alpha)\). This means that \(q_{i, j} \in \overline{C(\alpha) \cap X_{i+1}}\). Hence \(\overline{C(\alpha) \cap X_{i_{+1}}} \cap \bar{D} \neq \varnothing\). But, this is imposible by Leama 0.1 and Lemma 1.8.

Thus, if \(q_{t, l} \in \tilde{C}\) then \(q_{\text {que }} \notin \overline{\mathbb{D}}\).
Assume now \(q_{k, \ell} \notin \widetilde{C}\) and \(\left\{u_{\kappa} ; \alpha \in 2^{\omega}\right\} \subseteq q_{k, \ell}\) be such that for each \(i \in \omega\) and for saoh \(\alpha_{1}<\alpha_{2}<\ldots<\alpha_{i}\), \(U_{\alpha_{1}} \cap U_{\alpha_{2}} \cap \ldots \cap U_{\alpha_{i}} \cap D_{i}\) is finite (the existence of \(U_{\infty}\) follows from the property ( \(P\) )). Then for each if there exist at most \(\dot{i}-1\) values of \(\alpha\) for whioh \(u_{\alpha} \in j_{i}\). Thus there oxista an ordinal \(\alpha\) suoh that \(\psi_{\kappa} \notin j i\) for each \(\dot{\nu} \in \omega\). This yielde qail \(\notin \bar{D}\).

> q.e.d.

References
[1] L. Bukovsky, E. Butkovirove: Ultrafiliter with \(x_{0}\) predecessors in Rudin-Frolik order, Comment. Math. Univ. Carolinae 22(1981), 429-447.
[2] Z. Frolik: Sums of ultrafilters, Bull. Amer. Math. Soc. 73(1967), 87-91.
[3] K. Kunen: Weak P-points in \(\mathrm{N}^{*}\), preppint.
[4] M. E. Rudin: Partial orders of the types in \(\beta N\), Trans. Amer. Math. Soc. 155(1971), 353-362.

Matematioky ústav SAV
Februárového vit'azstva 9, 04154 Koảice
Czeohoslovakia
(Oblatum 2.8. 1982)```

