Commentationes Mathematicae Universitatis Caroline

John D. O'Neill
On summand of direct products of Abelian groups

Commentationes Mathematicae Universitatis Carolinae, Vol. 24 (1983), No. 3, 407--413

Persistent URL: http://dml.cz/dmlcz/106240

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
 24,3 (1983)

ON SUMMANDS OF DIRECT PRODUCTS OF ABELIAN GROUPS J. D. O'NEILL

Abstract: In this paper we show that an infinite direct product of abelian groups can equal the direct sum of two indecomposable subgroups. This and other similar results are derived from corresponding results about direct sums of abelian groups first obtained by A.L.S. Corner and L. Fuchs.

Key words: direct product and direct sum of groups, slender, algebraically compact, rank.

Classification: 20K25, 20K26

In 1969 in [1] A.L.S. Corner showed, by example, that an infinite direct sum of rank two torsion-free reduced abelian groups can equal the direct sum of two indecomposable subgroups. We will prove that "infinite direct sum" can be replaced by "infinite direct product" in this statement. We will then prove the same thing for a variation of Corner's result obtained by L. Fuchs [Theorem 91.2 in 2]. By contrast we show in Theorem 4 that an infinite direct product of rank one torsion-free abelian groups cannot equal the direct sum of indecomposable subgroups. Finally, utilizing another example of Corner's, we present an abelian group G which can
be expressed as an infinite direct product in many unusual ways.

All groups herein are abelian. The letter N will denote the set of natural numbers. All unexplained terminology may be found in [2], particularly in Chapter XIII.

A few words on topology are necessary. Suppose a group E equals ${\underset{-\infty}{\infty}}_{\infty} E_{n}$. We give it the product topology induced by the discrete topology on the $\mathbf{B}_{\mathbf{n}}$'s. This topology is Hausdorff. If H is a subgroup of E, we designate its closure by \bar{H}. If $\dot{A}=B \bullet C \subseteq E$, then $\overline{\mathbf{A}}=\bar{B} \bullet \bar{C}$ when the following criterion is satisfied:
(*) if a sequence a_{1}, a_{2}, \ldots of elements in A converges to 0 , then $f_{B}\left(a_{n}\right)$ and $f_{C}\left(a_{n}\right)$ both converge to 0 where f_{B} and f_{C} are the projections to B and C. In what follows we shall have use for these open neighborhoods of 0 in $E: \quad E^{n}=\prod_{|k| \geqslant n} E_{k}$ for $n \geqslant 0$. Clearly $\cap E^{n}=0$.

Theorems

Our first theorem was inspired by Corner's example in II of [1] (see also Theorem 91.1 in [2]).

Theorem 1. There exists a torsion-free group E with decompositions $E=\prod_{-\infty} E_{n}=\bar{B} \oplus \bar{C}$ where \bar{B}, \bar{C}, and each E_{n} is indecomposable and every E_{n} has rank 2.

Proof. We divide the proof into three parts. (a) First we construct a group $A=B \bullet C=\oplus_{-\infty}^{\infty} E_{n}$ such that B, C, and each E_{n} is indecomposable and every E_{n} has rank 2. Let
$\left\{p_{n}, q_{n}, r_{n}\right\}, n \varepsilon Z$, be a set of distinct primes, let $\left\{b_{n}, c_{n}\right\}$, $n \in Z$, be independent elements, and let $A=B \oplus C$ where $B=\left\langle p_{n}^{-\infty} b_{n}, q_{n}^{-1}\left(b_{n}+b_{n+1}\right)\right.$ for all $\left.n\right\rangle$ and $c=\left\langle p_{n}^{-\infty} c_{n}\right.$,
 $E_{n}=\left\langle p_{n}^{-\infty} u_{n}, p_{n+1}^{-\infty} v_{n+1}, q_{n}^{-1} r_{n}^{-1}\left(u_{n}+v_{n+1}\right)\right\rangle$ with u_{n}, v_{n} being suitably chosen linear combinations of b_{n}, c_{n}. This is proved in the references cited above. The proof also reveals that, if x is an element in $A \cap E_{n}$, its projections $f_{B}(x)$ and $f_{C}(x)$ are both in $E_{n-1}+E_{n}+E_{n+1}$.
(b) Secondly we let $E=\Pi E_{n}$ and show that E equals $\overline{\mathrm{B}} \oplus \overline{\mathrm{C}}$. Since $\mathrm{E}=\overline{\mathrm{A}}$, we may apply the criterion (*) stated above. Suppose the sequence a_{1}, a_{2}, \ldots in A converges to 0 . We may suppose $a_{n} \varepsilon E^{n}$ for each n in N. But then $f_{B}\left(a_{n}\right)$ and $f_{C}\left(a_{n}\right)$ are both in E^{n-1} for each n and hence both converge to 0 . So $E=\bar{A}=\bar{B} \oplus \bar{C}$.
(c) Finally we show that \bar{B} is indecomposable (the proof for \bar{C} is similar). Suppose $\bar{B}=K \oplus$ L. Now B is fully invariant in \bar{B}, is indecomposable, and thus is contained in one summand, say K. Then $E / A \cong K / B \oplus L \oplus \bar{C} / C$. Since E / A is algebraically compact [Corollary 42.2 in 2 J , so is L. But E has no non-trivial algebraically compact subgroups, so $L=0$, as desired.

Out next theorem is based on Fuch's generalization of Corner's result [Theorem 91.2 in 2 J.
$\frac{\text { Theorem 2. There exists a torsion-free group } \bar{A} \text { of the }}{\infty}$ form $\bar{A}=\prod_{1}^{\infty} B_{n} \oplus \bar{C}=\bar{X} \oplus \bar{Y}$ where $\bar{C}, \bar{X}, \bar{Y}$ are indecomposable and each B_{n} has rank one.

Proof. (a) first we construct a torsion-free group A
 each B_{n} has rank one. The proof of Theorem 91.2 in [2] provides just such an example (with other lettering). Let $\left\{p, q, p_{n}\right\}, n$ in N, be a set of distinct primes and let $A=B \oplus C$ where, for independent b_{n} and c_{n}, we define $B=\underset{N}{\oplus}\left\langle P_{n}^{-\infty} b_{n}\right\rangle$ and $C=\left\langle p_{n}^{-\infty} c_{n}, p^{-1} q^{-1}\left(c_{n}-c_{n+1}\right)\right.$ for all n in $\left.N\right\rangle$. For s and t such that $p s-q t=1$ let $x_{n}=p b_{n}+t c_{n}$ and $y_{n}=q b_{n}+s c_{n}$ and set $x=\left\langle p_{n}^{-\infty} x_{n}, p^{-1}\left(x_{n}-x_{n+1}\right)\right.$ for all $\left.n\right\rangle$ and $Y=\left\langle p_{n}^{-\infty} y_{n}, q^{-1}\left(y_{n}-y_{n+1}\right)\right.$ for all $\left.n\right\rangle$. We also define $E_{n}=\left\langle p_{n}^{-\infty} b_{n}, p_{n}^{-\infty} p^{-1} q^{-1} c_{n}\right\rangle$ for each n and $E=\prod_{N} E_{n}$. Now we have $A=B \oplus C=X \oplus Y \subseteq \Pi E_{n}=E$ with C, X, Y indecomposable and B a direct sum of rank one groups.
(b) Secondly we show that $\overline{\mathrm{A}}=\overline{\mathrm{B}} \oplus \overline{\mathrm{C}}=\overline{\mathrm{X}} \oplus \overline{\mathrm{Y}}$ in E . From the structure of E it is clear that $\overline{B \oplus C}$ (or \bar{A}) equals $\bar{B} \oplus \bar{C}$. To show $\overline{X \oplus Y}$ (or \bar{A}) equals $\bar{X} \oplus \bar{Y}$ we apply criterion (*). Suppose the elements a_{1}, a_{2}, \ldots in A converge to 0. We may suppose each a_{n} is in E^{n}. From the definitions of x_{n}, y_{n}, and E^{n} we see that $f_{X}\left(a_{n}\right)$ and $f_{Y}\left(a_{n}\right)$ are in E^{n} for each n where f_{X} and f_{Y} are the projections to X and Y. Therefore $f_{X}\left(a_{n}\right)$ and $f_{Y}\left(a_{n}\right)$ both converge to 0 and $\bar{A}=\bar{X} \oplus \bar{Y}$.
(c) Finally we show that $\overline{\mathrm{C}}$ is indecomposable (the proofs for \bar{X} and \bar{Y} are similar). SubDose $\bar{C}=K \oplus$ L. Since
C is fully invariant in \bar{C} and indecomposable, we may suppose $C \subseteq K$. Let $P=\underset{N}{\pi}\left\langle p_{n}^{-\infty} c_{n}\right\rangle$. Since $\left.P / \underset{N}{\mathscr{N}} p_{n}^{-\infty} C_{n}\right\rangle$ is algebraically compact, P is in K. Since $p q \bar{C}$ is in P and L is torsion-free, $\overline{\mathrm{C}}$ must be in K and $\mathrm{L}=0$. The proof is complete.

In the last two theorems the E_{n} 's all had rank greater than one. This was no mere coincidence as our next theorem will show. The theorem is a natural consequence of some wellknown facts. First we need a lemma.

Lemma 3. If f is an endomorphism of a group of the form $V=\prod_{I} R e_{i}$ with $R \subseteq Q$, then the pure subgroup generated by $f\left(e_{i}\right)$ is a direct summand of V for each i.

Proof. We may assume R is reduced and that $f\left(e_{m}\right)=x \neq 0$ for some m in I. Since the characteristic of e_{m} is \leqslant that of each component of x, we may write $x=\Sigma\left(a_{i} / b_{i}\right) e_{i}$ with a_{i}, b_{i} in Z and $b_{i} R=R$ for each i. If d is the g.c.d. of the a_{i} 's, then x / d is in V, so we can assume $d=1$. Also $V=\operatorname{liru}_{i}$ where $u_{i}=\left(1 / b_{i}\right) e_{i}$. For some finite subset $J=\{1,2, \ldots, n\}$ of I, we have $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$. There is a $n \times n$ matrix $A=\left(a_{j k}\right)$ over Z such that $a_{1 k}=a_{k}$ for each k and $|A|=1$. Write $x_{j}=\sum_{k} a_{j k} u_{k}$ for $j=2,3, \ldots, n$. Then $v=$ $\left.R x \oplus \underset{j=2}{\oplus} \underset{\sim}{\oplus} R x_{j}\right) \oplus \prod_{I \backslash J}^{\Pi R u_{i}}$ and $R x$ is the pure subgroup generated by x .

Theorem 4. An infinite direct product of rank one torsion-free reduced groups cannot equal the direct sum of indecomposable subgroup

Proof. Suppose a group V equals $\underset{I}{\Pi R_{i}}=\underset{J}{\oplus A_{j}}$ where I is infinite, each R_{i} is torsion-free reduced of rank one, and each A_{j} is indecomposable. Let B and C be the direct sum of the A_{j} 's of rank 1 and rank >1 respectively. Then B is slender [Theorem 95.3 in 2$]$ and some R_{i}, say R_{1}, must be contained in C. Let each R_{i} have type t_{i} and set $t=t_{1}$. Write $v_{t}=\prod_{t_{i}=t} R_{i}$ and $v^{t}=\prod_{t_{i}>t} R_{i}$. Both $v_{t} \oplus v^{t}$ and v^{t} are fully invariant subgroups of $v[$ Theorem 96.1 in 2$]$ and each is then a direct sum of A_{j} 's since the A_{j} 's are indecomposable. Hence, by cancelling v^{t} we may assume $v_{t}=\underset{J}{\oplus} A_{j}$ for some subset J^{\prime} of J. For some j in J ' and projection $f: V_{t} \rightarrow A_{j}$ we have $f\left(R_{1}\right) \neq 0$. Since R_{1} is in C, this A_{j} has a proper rank one direct summand by Lemma 3 and is not indecomposable. This contradiction proves the theorem.

In a final theorem we illustrate the fact that many unusual decompositions of direct products can be derived immediately from corresponding direct sum decompositions. For verification of the theorem we will cite another theorem of Corner on direct sums and then indicate why the transfer from direct sum to direct product is permissible.

Theorem 5. There exists a group G such that, for every sequence of positive integers r_{1}, r_{2}, \ldots, infinitely many of which exceed 1 , there exist indecomposable subgroups A_{n} of rank r_{n} in G such that $G=\Pi_{N} A_{n}$.

Proof. Let $\left\{p, p_{n} q_{n}\right\}, n$ in N, be a set of distinct primes and for independent u_{n} and x_{n} define $B_{n}=\left\langle p^{-\infty} u_{n}\right.$,
$p_{n}^{-\infty} x_{n}, q_{n}^{-1}\left(u_{n}+x_{n}\right)>$. Suppose the sequence r_{1}, r_{2}, \ldots is given. Let $A=\underset{N}{\oplus} B_{n}$ and $G={\underset{N}{N}}^{\Pi B}{ }_{n}$. We now make an observation. Suppose N has partitions $\left\{N_{i}\right\}$ and $\left\{M_{i}\right\}$ for $i=1,2$, \ldots with each N_{i} and M_{i} finite; and suppose, for each i, that $\underset{n \in N_{i}}{\oplus} B_{n}=\underset{m \in M_{i}}{\oplus} C_{m}$ for some subgroups C_{m}. Then $A=\underset{N}{\oplus} C_{m}$ and $G=\prod_{N} C_{m}$. Now, by a finite number of such operations, Corner showed [Theorem 2 in I of 1; also Theorem 91.3 in 2] that we can obtain a decomposition $A={\underset{N}{N}}^{\oplus} A_{i}$ where each A_{n} is indecomposable of rank r_{n}. Hence $G=\prod_{N} A_{n^{\prime}}$ as desired.

References

1. A.L.S. CORNER, A note on rank and direct decompositions of torsion-free abelian groups, Proc. Cambridge Philos. Soc. I in 57 (1961), 230-233, and II in 66 (1969), 239-240.
2. L. FUCHS, Infinite Abelian Groups, Academic Press, N.Y., Vol. I (1970), Vol. II (1973).

University of Detroit
Detroit, Michigan 48221
U.S.A.
(Oblatum 14.1. 1983)

