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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

25,4 (1984) 

ON SYSTEMS, PERIODS AND SEMIPOSITIVE MAPPINGS 
Svatopluk POLJAK, Daniel TURZIK 

Abstract: We study the periodical behaviour of discrete 
systems induced by symmetric graphs which cover some models 
investigated before. We introduce a class of transition map
pings which imply restricted periods of systems. 

Key words: Symmetric graph, discrete system, period. 

Classification: 05G99, 90A08 

Introduction. In this paper we present a particular model 

of discrete systems which covers some models studied before. 

We give a sufficient condition (Theorem 1.2) for the system to 

have a restricted period. The formulation of Theorem 1.2 is, 

in fact, a postulation of the method of the proofs of [11 and 

13]• Two properties of mappings occur to be important: adjoin-

cy and seraipositivity. While the former is a known property, 

the latter is introduced in the paper. It appears to be a com

mon property of nonderecreasing real functions R — * R and li

near positive semidefinite functions R — * - R . (R is the k-

dimensional Euclidean space, R«R real numbers.) The semiposl-

tivity is studied in Sections 2 - 4* 

We conclude the Introduction with a survey of some known 

results. These may be easily illustrated by a social influence 

model. 
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Let if he a society of m members and (f be the set of their 

possible opinions. The opinion of the i-th member at time t is 

dtnoted as x i ( t ) . The members change their opinions simultane

ously in discrete steps, and the opinion x^Ct+D depends only 

on opinions of other members at time t. If the set O* ie finite, 

the system must behave periodically after some finite number of 

steps. We investigate possible periods of such systems. Some 

special cases have been considered 00 far. 

Model A. [11. The set (f of opinions is a finite subset 

of real number0. Every member la equipped with a nondtcrtaaing 

function f^jR—> (T • The next opinion xi(t+1) ie given by 

x^(t+1) • fi(.S- w-HX--(t)) where w^* R ie the influence of the 

j-th member on the i-th member. 

Theorem A L ** 1 • If w ^ • w^. for all 1, jt then the period 

of Model A ie at moat 2. 

Model B. [23. The set (f « lo.j,... ,0^ ie a discrete set 

of possible alternatives. In time t+1 every mtmbtr acctpta the 

majority opinion with respect to influences w^y That le 

x . ( t + 1 ) * 0., for which the sura 2 w(i,j) attains the maxi-

num. (If the sum is maximal for more alternatives, say ojL ,..• 

• ..,o. with i-|< ±2< •••< 1 f the member accepts the alttrnati-

•t 6± •) 
r 

Theorem B t2l. If w ^ » w.y for all if i9 then the period 

of Model B is at most 2. 

Model C.C31. A generalization of Model B. As an addition, 

there are real numbers aC, for every alternative o, which art 

inttrpreted as attractivity of the alternative. Here x^(t+1) » 
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» o-̂  for which the expression ^ i *.* • cf?» o * wji ia maximum. 

Moreover, a permutation .Jr., is assigned to each member. In ca

se of a tie (as a b o v e ) , the member accepts the opinion oi for 
s 

which tf-jUg) • max( .Ji^d-j),... t Tt^d^)). 

Theorem C [33. If w ^ • w^. for all it j 9 then the period 

of Model C is at moat 2. 

Further examples are given in Section 5. 

1. Systems and periods, A anace is a set S with two bina

ry operations + and • where + is a mapping S>«S— .• S and • la 

a mapping S .xS —> R which satisfy the only axiom (u+v) • w • 

• u « w + T » W for eTery u tv fweS. 
k The Buolidean space R or, more generally, a real Hilbert 

space are examples of a apace if u • v denotes the scalar prod

uct. However, in generalt we do not require either commutativi-

ty or associativity of the operations + and • . We will use the 

notation 

"?4 ui " (••• ((^•H-"2)+tt3+»-»)+^nt »»d U « T will be abbrevia

ted as uv. 

Let m be an integer. A system ^ is a triple, tf • 

• (tS^ •f*:M^t**i*)» where S^, i • 1t...tmt are spaces, a^t 

tS^—• Sa and f^sS^—-» Sit it j « 1t...tm are mappings. The 

state x(t) - (x1(t)t...txA(t)) of the system if in time t c 

c {0f1f...\ is an element of S ^ S^x ...x S . fe shall refer 

to xi(t)t S^ as to the state of the 1-th element In time t. 

the atate x(t+1) - (x^t+D,... txBl(t+1) ia glTen by 

xi(t+1) - t ± ( ^ a^CxjCt)), i - 1t...tm. 

The atate xi(t) can be interpreted as an opinion of the 1-th 
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•ember, a, . as the influence of the i-th member on the J-th mem-

ber9 the sum . 2£+&.AxA\)) as the total influence on the i-th 

member in tine t9 and t± as a mapping which creates a new opini

on xl(t+1) from the total influence. 

le say that a ayotem *3 has the period T9 T>0 9 for some 

initial 0tate x(0)9 if x(t0+T) « x(tQ) for some t and T ie the 

smallest integer with this property. 

Let S and Q be spaces, k pair of mappings giS —> Q and h: 

*Q — > s i0 ©aid to be adjoint (co-adjoint) if g(u) • T » u • h(T) 

(g(u) • T • h(T) • u) for eTery u € 3 and T GQ. 

Clearly, if the operation " . " is commutative then g and h 

are adjoint iff they are co-adjoint. Let us remark that the map-
m 

pinge u — * A.u and T—»*A T are (co-)adjoint for any real matrix 

k. 

Let S be a apace and f:S —> S be a mapping. We say that f 

i B semipositive (seminegative) if for eTery n.?2 and eTery u-j f 

... fun€. S 

^fA (u±t (ui) - U1-B1 f (U±) ) £ 0 ( £ 0). 

and the equality holds only in case f(u^) » f (u 2 ) • ... - f ( u n ) . 

(The indices are taken mod n.) 

1e say that a mapping f ie positive (negatiTe) if it ia ae-

mipositive (seminegative) and injective. 

Theorem 1.1. Let JP - (tSji t^ai J $^t^\) be a oyotem ouch 

that 

( i ) &±* and a.^ are co-adjoint for eTery i 9 j » 1 9 . . . 9 m 

( l i ) t± i a semiposit ive for a l l i -*19 . . .9m or 

f̂  i s seminegative for a l l i » 1 f . . . f m . 

Then the only poss ib le periods of the system if are 1 or 2 . 
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This theorem is a special case of Theorem 1.2. Q 

In fact, we can consider a more general system such that 

the state x(t) depends not only on the state x(t-1) but also 

on the states x(t-2) f... fx(t-q) for some fixed q2l. More pre

cisely, a system ^ is a triple ^ « MS^-.ta^A, if^)» ifj» 

*1,...9mf 1=1,...,qf and the state of the 1-th element in time 

t is given by 

*!<*>= *!<£?-, & •}l(xj{t-1)». i-1 m. 

Theorem 1.2. Let ^ « C-tS^ fl*±4$*$*$}) toe a system such 

that 

( i ) aK and a?^1 + are co-adjoint , 

for a l l i f j = 1 , . . . f m and l « 1 , . . . f q f 

( i i ) f i i s semiposit ive for a l l i « 1 f . . . f m or 

f. i s seminegative for a l l i « 1 f . . . f m 9 

then the only poss ib le periods of the system *8 are d iv i sors 

of q+1. 

Proof. Let a l l f.. be semiposit ive and l e t the system have 

a period T for some i n i t i a l s t a t e . We can assume TQ»0 in the 

de f in i t ion of the period. Then 
mv q, T 

A - . ^A O^A (*2 .< a l l ( x 1 ( t - l + D ) x l ( t + D -
A ^ a l Iz 1 t * 1 d 1 J x 

T -± a^ (x, (t-1+1) )x, (t-q) 

t?1 a£jl+1(*l(t-q))-j(t-l+1)> -

f< K< (tl< ajl(xj(t-l+1))xl(t+1) -
T , 

t S n a j j ( x i ( t - l + 1 ) ) x l ( t + 1 ) ) - 0. 
т 
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(In the second equality we used that a^. and aSj are co-ad

j o i n t , i n the third one the fact that T i s the period.) Put 

v i ( t ) • * £ , Jl a a i i ( x . ( t - 1 + D ) . Then we have for every i=1 f 

B i %?4 ( r ? < fi< ^ d j t t - i + D i i i w ) -

- , 2 . . 2 . a^(x.(t-.1+Dx,(t-q)) -

T 
" i?4 ( v i ( t ) f i ( v i { t ) ) - v i ( t ) f i ( v 1 ( t - q - D ) -

T 
- 2^ ( v i ( t ) f i ( v i ( t ) ) - v i ( t+q+1)f i (v i ( t ) )^0 

nrtv 

by the seraiposit ivity of L . As .25 2L • A • 0 we have 

T 
^ ( v i ( t ) f i ( v i ( t ) ) - v i ( t + q + 1 ) f i ( v i ( t ) ) - 0 

Using the seraiposit ivity of t^ we have x ^ t + D » f ^ v ^ t ) ) -

« f i ( v i ( t + q + D ) • x i ( t+c+2) for t * 1 , . . . f T . Thus, T i s a divisor 

of q+1 as i t i s the period. Q 

2 . Properties of the c lass of seraipositive mappings. The 

aim of th i s sect ion i s to show some basic propert ies of the c las s 

of semiposit ive mappings. 

Let S be a space and f fg:S—¥ S be mappings. The sura f+g i s 

the mapping S —> S defined by (f+g)(x) » f (x) + g(x) for every 

i t S. 

Proposition 2 . 1 . I f f and g are semiposit ive mappings, then 

f+g i s semiposit ive provided H • n i s commutative. D 

Let S-jXSg be the cartes ian product of two spaces S- and S^ 

with the operations + and • defined by 

(U-j-Ug) + ( v 1 t V 2 ) « (u-j+V-pUg+Vg) 
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(ut fUg) • (v., f v2) - u.j • v.! + Ug. v2 

Proposition 2.2. The product S^xSg of two spaces is a 

space. D 

The product t^x f2:S.jX S2~> S ^ S 2 is defined by 

(f^ f2)(u . | .Ug) » (f1(u1)ff2,(u2)). 

Proposition 2.3* The product f.jX f2 of two semiposi.tive 

mappings is semipositive. D 

Let f:S—> S be a one-one mapping. Denote f~ its inverse. 

Proposition 2.4. Let " * " be commutative. Then the mapping 

f~ is semipositive iff f is. D 

Proposition 2.5. Let f:S —> T and h: T —*• S be a pair of 

adjacent mappings and f:S—*• S be a semipositive mapping. Then 

the mapping f « gfh is semipositive as well. 

Proof. Let ufv£T. If we set w=f(h(v))f then u * T(v) » 

- u • g(w) » h(u) • w » h(u) • f(h(u)). Hence 

% (xi?(xi) - xi^1I(xi)) » -S (h(xi)f(h(xi)) - h(xi^1)f(h(xi))) 

for every choice of x-j,...fx . The sura is nonnegative as it cor

responds to the choice h(x.j ) ,... ,h(x ) e S for f which is semi-

positive. If f(h(x.|)) « ... » f(h(xn)) then obviously ?(x.j) » 

» ••• « Kx^). Thus f is semipositive. Q 

Beginning from here, we will deal with Euclidean spaces on-
k 1 ly. Let us introduce some necessary notation. For x€R let xJ 

k k 

be the j-th component of x. If f:R —> R is a mapping, we wri

te f^(x) instead of (t(x))K We shall use the symbol :£ inste-

ad of .-S. . Using the sura the subscript i-1 in x^-j is always 

taken mod n. The axiom of seraipositivity will be used in the 

form 2 (xi-xi-t)f(xi)2 0. 
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Proposition 2.6. Let c be a positive real number and f: 

: R — * R be (semi)positive. Then the mapping cf defined by 

(cf)(x) « cf(x) is (semi)positive as well. D 

Proposition 2.7. Let V be a linear subspace of R and 
k 

piR*-—• v be the orthogonal projection on V. Then the composi

tion pf is (serai)positive on V for any f (serai)positive on R . 
k Proof. For every y€R there is a unique decomposition 

y • p(y)+y# where y'e V*1" (the orthogonal complement of V). 

Clearly xy«xp(y)+xy '«xp(y) as xy'=0 from the orthogonality. Hen

ce 

2 (xi-xi-1)pf(xi) • 2 (x±-x±mm^)t(x±)>: 0. 

Obviously pf is infective iff f is. D 

k k 
Let us remark that the mappings p:R — • V and id:V—> R** 

are adjacent. Thus pf is seraipositive also by Proposition 2.5. 

3. Linear mappings. A symmetric square matrix A is called 

positive (semi)definite if xAx>0 (£.0) for every vector xf x-fO. 

Theorem 3.1. Let A be a real square matrix of size k. Then 

A is positive semi definite iff the mapping xi—->Ax is seraiposi

tive. 

Proof. 1. Sufficiency. Let A be positive seraldefinite 

and x-j f..• fxn* R f n£ 2. Then 

Z (x.j-x.^.1) (Axi) » j .2 (Xj-x^-j )A(xi-xi-1 )Z 0. 

I f 2 ( x i - x i ^ 1 ) ( A x i ) « 0 then ( x i - x i ^ ) A ( x i - x i - 1 ) » 0 for every 

i « 1 f 2 f . * . f n « As every pos i t ive seraldefinite matrix A equals 
T T 

B B for some Bf we have 0 « ( x ^ x ^ )B Bte.j-x^.j) « 
• (BCx^x^-j)) • Hence B ( x i - x i _ 1 ) » 0 and a lso A ( x i - x i - 1 ) « 

- 604 -



•BT 
• B B(xi-xl-1)-«0. Thus Ax1 » Ax2 »...-« Axn and the mapping 

x v—y Ax is semipositive. 

2. Necessity. Let the mapping x I—>Ax be semipositive. 

We are to prove 

(a) xAx*>0 for every x £R f 

(b) A is symmetric. 

Denote o the zero vector. Then xAx =- (x-o)Ax + (o-x)Ao3.0 for 

every x€ R . Thus (a) holds. Let A be a nonsymmetric matrix 

such that the mapping n - > A i i s semiposit ive. Let us f i r s t a s 

sume k*2. Then there ex i s t a p o s i t i v e semidefinite matrix B and 

a rea l c^O such that 

c(A+B) « I 1 i J " D* T n e ^PP*11^ x i—> Dx i s semiposit ive 

due to Propositions 2 . 1 f 2 .6 and the f i r s t part of the proof. 

Clearly e =fc 0 as D i s nonsymmetric. Let a be a real number and 

n be an integer such that 
P 2 

na + (2n-1)n + e an < 0. 
Consider 2n vectors x1 fX2»..« t*2n€ R defined by x^ • ( i a f i ) 

for i » 1 f . . . f n f x n + i • ( (n- i )a f n+i ) for i » 1 f . . . f n - 1 , and a ^ • 

» ( 0 , 0 ) . 

Then ^ ( x ^ - x ^ . ) ! ^ - ^ 2 , C*i-*i_i>*l + .v-F4t-l--l-1>-l + 

+ * •.S<4--!-i>-i - y .v-C <-i--l-i>2 + \ £< (4-4-1 >2 + 

+ e • V ? / | ( 3 - i - x i . i ) x i " n & 2 + j ( ( 2 n - 1 ) + (2n-1) 2 ) + e*(a+2a+. . . 

2 2 
. . .na+ (n-1)a+ . . .+a) * na + (2n-1)n + £ * an < 0. 

The case k > 2 can be reduced to the case k«2. D 

Corollary 3.2. A square matrix A is positive definite iff 

the mapping x •—> Ax is positive. D 

605 -



k k Let us say that a mapping f:R —> R has the property P 

for some integer n if 2 (xj.-x. «)f (x.) £ 0 for every x . j , . . . 

. • « f X„ & K • 
Hence, a semipositive mapping f has property Pn for all n. 

Proposition 3«3» For every integer n£ 2 there exists a li

near mapping f having property P which is not semipositive. 

Proof. Let f be the linear mapping defined by the matrix 

(n „*). The mapping f is not semipositive by Theorem 3.1 as the 

matrix is not symmetric. It has the property P by the follow

ing lemma. 

Lemma 3.4* For every integer n?2 and every x^-y^e R, i* 

-1,...,n, we have 

^ < 3A <*i-*i-i>2 + 3* <yi-yi-i>2> + 

+ Jn
(yi-yi-i>xi20-

Proof. Let us set B±:aX±mmX±mm^ $ riByi""yi-1 * o r ^ i * * M n * 

Then s n = -(si+»--+sn -- j) a n d r
n " ~( r i+-**+ r

n«i )• We c a n w r i *e 

the expression in Lemma as 

*?•<• £A - i + < t S , 8i> + v ? 1 r ! + (V?1 ri> ) + i ? 1 r i x i - x n -

. . S 4 v ^ . ^ (s2+r2) + . S , (r± . ^ . j ) r 

> I S . i r , + s . ) 2 £ 0 . O 

4« Constructions based on monotonous mappings. The next 

lemma can be found in C83. 

Lemma 4.1. Let u ^ Up is ... i u and v̂  £ v2 £ . • • — vn be re

al numbers, and 3f be a permutation of the set *C1 f2,,.# ,ni. 

Then 
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( i ) ifv. uivi 2 i?M uiV(i) 
( i i ) The i n e q u a l i t y ( i ) i s sharp i f f t he re a re some i , j 

such t ha t u t < U j and v f l ( i ) * V j f ( ; j ) . D 

Corol la ry 4 .2 . Let u.. £ . . . £ uQ< u g + 1 f . . . f uQ and v.| £ . . » 

••• ~ v
s

< • s + 1 - • • • ~ v n he r ea l numbers, # a cyc l i c pe rmuta t i 

on of * 1 , 2 , . . . , n i . Then 

. 2 . u. V. > . 2 . U . V^/ . x • .t-1 i i i H i i t ( i ; 

Proof. Put I ss 41,...,si and J a {s+1 ,••• ,xijf» As ar is 

the cyclic permutation there are i and 3 such that iel, j € J, 

.jf(i)eJand jf(j)€.I. Thus u^< u . and v f^\> • -/.*)• D 

Theorem 4.^. Let f:R—» R he a mapping. Then 

(i) f is positive iff f is increasing, 

(ii) f is semipositive iff f is nondecreasing. 

Proof. The part =.=> . Assume that f is not nondecreasing. 

Then there exists a pair x,x#€ R such that x-cx' and f(x) ^ 

>f(x'). Then xf(x) + x'f(x')< xf(x') + x'f(x) and hence f is 

not semipositive. 

The part <.=== • Let f be nondecreasing, and let x^,...,*^ 

& R. Then H (x^x-^ )f (x.^^ 0 by Lemma 4.1. Assume that not 

all f(xi) are equal. Then f(xg)< f(x .-) for some s< n, and hen

ce x < x s + 1 as f is nondecreasing. Thus 2? (x^-x^ -j)f (x^)> 0 

by Corollary 4.2. D 

The following example generalizes the fact that the pro

duct of increasing mappings is positive. 

Example 4.4. Let f:Rk—> Rk be a mapping satisfying X*3 < 

< y^ =^ fnx)<f^(y) for every x,ycR k and j»1,...,k. Then * 

is positive. 
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k 0̂ , in 

Proof. Let x1#...fxn6R be such that ST +• x
 w for some 

j0, r and s. By Lemma 4.1 £ (x^-x^-. )f^(x1) * 0 for every j* 
- * « , . • . f K. 

Moreover, 2 ( x ^ - x ^ ^ f °(x1)>0 by Corollary 4.2. 

Thus 2 (xi-xi-i1 )f (x1) > 0. O 

Let x€ R and ̂  be a permutation of -Cl,*»-,ki. Then we 

denote by .*r(x) the vector (x^15
 f... f x * ^

k ) ) . 

Let us assign to every vector x£ R a unique permutation 

irx of -C1,•..,!:I such that Jn*x(i) < ^x(j) if either x ^ x . or 

x1 * x. and i< ,j. We shall also use the notation x « :fr
x(-

1-) &^d 

t ST-d) 

x" « x • (Let us remark tha t the vec to r x a r i s e s from the 

vec to r x by o rder ing i t s components i n the nondecreasing sequ

ence. ) 

I t i s easy to see t ha t Lemma 4.1 g ives 

(1) xy£xy for every x fycR • 

Let us denote Mk » \xe Rk \ x 1 * x 2 £ . . . 6 x k h 
k k 

We say tha t a mapping g:R —*• R i s the f a i r - e x t e n s i o n of 

a mapping fsiY^—* Mk i f g(x) « sf^1 (f ( ai^Cx))) fo r every x £ R k . 

Let us remark tha t the mapping g s a t i s f i e s 

(2) 3fx(i)<: 3 f x ( 3 ) ^ g i (x )^g ; j (x ) 
k fo r every xe R and i f 3 « 1 , . . . , k . 

k k 
Theorem 4 . 5 . Let g:R —> R be the f a i r - e x t ens ion of a 

k k 
semiposi t ive mapping f:M —* M • Then g i s s e ropos i t ive as we l l . 

k Proof. Let x - j , . . . f x^€R . Denote y 1 = g ( x i ) , i=1, 

Then f± « f ( % ) • I t follows from (2) t ha t 

O) x±*± " ^ i ^ i f o r - - • 1 f•••#»• 

As the mapping f i s semipos i t ive , we have 

(4) £ (f i - x l - > 1 )y± Z 0. 
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Combining (1)f(3) and (4) we get 

(5) % (xi~xi-i>yi * £ (V 2±-1 )y^ 0. 

Suppose that 

(6) IE ( - V ^ i - l ^ i • °* 

Then (5) implies that the equality holds in (4) f and hence f^m 

=-...--yn by the semipositivity of f. In a way of contradiction 

assume that not a l l y^ are the same. Let s be the minimum j 

such that at least two y£f i » 1 f . . . f n f are d i s t inc t . Choose an 

r such that yr= min $y® \ i = 1 f . . . t n $ and y p ^ y ^ * Let us consi

der the sets I r - 1 and I r defined by I t « l)\ y ^ 4 y r J for t - r -1 f 

r . As s e I r-I r_-j t and I r and I^-j are of the same cardinal i ty, 

there exists some t c l ^ - p l such that 

<<"> y ^ i > y ^ i t 

(8) y £ < y r , and 

(9) s < t . 

Since I .- n $1 f . . . f s-1 \ » I p n^1 f . . . f s - l l f the conditions (2) f 

(7) and (9) give 

(10) -*£.!* x£. r 

Thus Lemma 4.1 due to (8) and (10) gives x ^ y ^ "5-^.-^ which 

contradicts (6). D 

Let f ff
2
f...,f

k be real mappings R —> R such that f (x)£ 

& f 2 (x) .£ ... & fk(x) for every x€R. Let us define the mapping 
-W ( A \ 

g:Rk—> Rk by g3(x) » f x (x3) for xcR k and j - 1 f . . . f k . (This 
1 2 

means that f i s applied to the smallest oomponent of xf f to 
the smallest component but onef e tc . ) Let us ca l l th is mapping 

1 k 
g the cross-product of f t . . . f f • 

Corollary 4.6. ( i ) The cross-product g i s Bemipositive 

provided a l l f are nondecreasing. 

( i i ) The cross-product g i s posit ive provided a l l f are 
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increasing. 
•t * 

Proof. Let f be nondecreasing for i » 1 f . . . f k . Then the 
1 k 

cartesian product f*f x . . . x f i s a semipositive mapping 

MT—+ if* ip the Proposition 2.3 and Theorem 4«3. This yields 

that g i s semipositive as well. If f are increasing the map

ping g i s infective and hence posit ive. Q 

Example 4.7. Let s be an integer, U s-£k. Then the map

ping gsRk—* Rk defined by g^(x) • 1 for jr*x(:J)>k-sf and **0 

otherwise, i s semipositive as i t i s the cross-product of con-
1 k 1 

stant mappings f f . . . f f where f*,(x)»-0 for j = 1 f . . . f k - s f and 
f^(x)«1 for 3«k-s+1 f . . . fk. 

Example 4.8. The mapping g:Rk—•»- Rk defined by gHx) • 

= J?x(i) i s semipositive as i t i s the cross-product of const-
1 k 1 

ant mappings f f . . . f f where f**(x)«-j for j « 1 f . . . f k . 

Let f and g be mappings M —> Vr* We say that g i s a t i e -

modification of f if for every xslYT and every I c £1 f 2 f . . . fkf 

such that x -sx*' for i f j € l and x ^x*' for i € l f 3 4 I we have 

( i ) 2 . x M ( x ) m J£ x V ( x ) and 
jf €> 1 if 6 * 

( i i ) S . xhHx) « ,-2T x^g^(x) for every i » 1 f . . . f k . 
}±< 4*< 

( i i i ) f (x)- f (x ' ) -a* g(x)»g(x') for x f x 'e Mk. 

Tneorem 4.9. A tie-modification g of a (semi)positive 

mapping f i s (semi)positive as well. 

.proof. Let f be semipositive and x-p.^jX^eM • Conditi

on (£) gives 

(11) *±&(x±) " x i f ( x i > f o r i «1 f2 , . . . t iu 
Using ( i i ) one can prove that 
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(12) x±mm^g(x±) £x±mm^t(x±) for i«1 f 2 t . . . , n . 

Thus 

(13) £ (x i -x i - 1 )g(x i ) > £ ( x i - x i - 1 ) f ( x i ) ^ 0 . 

If the left-hand sum equals zero so i t does the right-hand sum, 

and i t i s f (x-j )=. . .»f (x^) by the semipositivity of f. Using ( i i i ) 

we complete the proof of semipositivity of g. If f i s in fec t i 

ve, then by (13) g i s infective as well. D 

Remark 4*10* Let us consider a part icular case of tie-rao« 

dification. Keeping the notation from the definition, l e t g sa

t isfy (iv) instead of ( i ) and ( i i ) . 
# (iv) g i(x)» J | J ^ 2 J fi(x) for every ifc I . 

Clearly (iv) implies ( i ) and ( i i ) which proves that g i s a t i e -

modification of f. 

Example 4*11> For a vector xe R set m(x)» { i l x -» 

« max^x f . . . f x I \ • Then the mapping f:R —> R defined by 

. y imtx)! for ^era(x) 
f3(x) - / 

^ 0 otherwise 

is semipositive as it is a tie-modification of the mapping de

fined in Example 4»7 (for s=1). 

5» Applications. In this section we show that the models 

Af B and C can be interpreted in our general scheme and that 

Theorems Af B and C follow from Theorem 1.1. 

Model A. Let S^R, f. be nondecreasing mappings, and 

ai1(x)ssWi1x *or ^»3SS<J »• • • t»ra. The mappings fj are semipositive 

by Theorem 4.3* The mappings a.. and a., are co-adjoint as 

wij " wji. 
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Model B. Let S^R , f.̂  be the cross-product of £1
f... 

...fg where g =-g2--...--gk~ =0f g
k-»1, and ai,(x)=wi.x for if:j-* 

*»1f2f...fnu Here the possible opinions are vectors with all 

components but one equal zero. The auxiliar component with va

lue 1 indicates the choice of an alternative from o-j-.••• 9o^« 

The mappings t . are semipositive by Example 4.7 (s=1). The map

pings aj, * and a ^ are co-adjoint as Wj.aw... 

Model C. This model differs from the previous one only in 

the mappings &AA* Here a., is the linear mapping given by the 
T matrix •P^BPi where B i s the diagonal matrix with en tr i e s b-n-* 

* °^l w i i an(* ^i * s * n e Permu*a"kion matrix of if*. The mappings 

a,.* and a ^ are co-adjoint by Remark 2.1» 

k A part icular case of Theorem 2.2 when a l l S^»R , for some 

f ixed integer k f can be interpreted as fo l lows . A soc ie ty of m 

members i s to decide about k a l t ernat ives . The poss ib le op in i -

on (xe R ) of a member i s formed by th ink ing of the a l t e r n a t i 

ves with (poss ibly ) d i s t i n c t in t ens i ty ( the component x^ expres

ses the weight of j - t h a l ternat ive in one's op in ion ) . 

Clearly each of the models A, B and C i s involved in t h i s 

more general one: We have k=1 and general weights in the model 

Af wh i le k 7 l and weights e i t h e r 0 or 1 i n models B and C. One 

can get a lo t of other examples when combining the r e s u l t s of 

Sections 2 f 3 and 4 . We mention only some of them in the form 

of brief remarks. 

1. The t i e rule i n models B and C can be rep laced by an

other one: If a member i s influenced by a great number, say r f 

a l ternat ives of the same weigh t , he accepts a l l of them with the 

same weight 1/r (see Ecample 4 .11) . 
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2. One may consider a model where the opinions are form

ed by the choice of the best s alternatives (»ee Example 4.7). 

3. The members of the society need not have the same rule 

for computing their new opinions. Moreoverf the opinions can 

consider only the best alternative, another choice of more best 

ones, and other may use some tie rule. The members even may dif

fer in the dimension of their "opinion space". 

4. The opinion of a member may be a ranking of the alter

natives (i.e. a permutation of 41 f2 ,... fk3f see Example 4.8). 

5. There are several possible ways of computing the new 

ranking of a member! 

- A member may prefer the alternatives according to the num

ber of first places among rankings of other members. If two al

ternatives coincide in the number of first places, the preferen

ce is done according to the number of second places, etc. 

- Another member may use some more sophisticated way based 

on suitable weighting of positions in rankings, then summing the 

weight of each alternative, putting in the first place the al

ternative with the maximum sura, etc. 

This paper was worked out at Technical University as a Re
search Report 1983. In a particular case, when considered in 
connection with the scalar product, the semipositive mappings 
introduced here coincide with cyclically monotonous mappings us
ed by Rockafellar in L-U to characterize the subgradients of 
convex functions. Thusf Theorem 3.1 can be derived Immediately. 
The connection between discrete influence systems and convex 
functions is pointed out in C53. The number of necessary steps 
before a system falls into a period has been studied in 16}. 
The limit behaviour of systems with infinite number of states 
has been studied in [71. 
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