Commentationes Mathematicae Universitatis Carolinae

Dalibor Volný
 On the central limit problem for processes of zero entropy

Commentationes Mathematicae Universitatis Carolinae, Vol. 26 (1985), No. 2, 253--258

Persistent URL: http://dml.cz/dmlcz/106364

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON THE CENTRAL LIMIT PROBLEM FOR PROCESSES OF ZERO ENTROPY
 Dalibor VOLNY

Abstract

In this paper we show that a strictiy atationary sequence of random variables with zero entropy cen belong to the domain of partial attraction of a uniform distribution. The dynamical system which is used in the construction is a rotation.

Key words and phrases: Central limit problem, strictly stationary process of zero entropy, dynamical system.

Classification: Primary: 60F05, 60G10 Secondary: 28D20

Let $(\Omega, \mathcal{A}, T, \mu)$ be a dynamical system where ($\Omega, \Omega, \mu)$ is a probability space (\mathcal{A} is a σ-algebra of subsets of Ω and μ is a probability measure) and T is a one-to-one bimeasurable and measure preserving transformation of Ω onto Ω.

For $\mathrm{I} \in \mathrm{I}^{2}(\mu)$, the sequence ($f \cdot \mathrm{~T}_{i} i \in Z$) is strictly atationary. It is proved in [1] that there exiats an invariant σ-algebra $M \subset \mathcal{A}$ (i.e. $M \subset T^{-1} M$) such that f is measurable with respect to the σ-algebra $\sigma_{i} \cup_{2} T^{i} m$ and the function $f_{-\infty}=E\left(\left.f\right|_{\&} R_{R} T^{i} M\right.$) is measurable with respect to the Pinsker 6 -algebra. For $f_{i}=E\left(f \mid T^{-1-1} m\right)-E\left(I^{-1} M\right), 1 \in \mathbb{Z}$, it holds $I=f_{-\infty}+\sum_{i} Z_{i} f_{i} \bmod \mu$. In accordance with [1] we say that $I_{-\infty}$ is the absolutely undecomposable and $\sum_{i} \sum_{i} f_{i}$ the difference decomposable part of f. According to [11, the decomposition of P into a sum of an absolutely undecomposable
and a difference decomposable part always exists and is unique with respect to the equality mod μ (note that for each $f_{i}, i \epsilon$ $\in \mathbb{Z}$, the functions $f_{i} \circ \mathbb{T}^{J}, j \in \mathbb{Z}$, form a martingale difference sequence).

Many interesting results have appeared when investigating the central limit problem for strictly stationary sequences of random variables (a review of this research can be found e.g. in the fifth chapter of [2]). According to [1], the achieved results concern the case of functions with degenerate difference decomposable parts (in the sense that their standardized sums converge weakly to zero). The aim of this paper is to give examples of functions f which are measurable with respect to the Pinsker σ-algebra (if they are from $L^{2}(\mu)$ they are absoluteIy undecomposable) for which the sequences $\mu\left(\frac{1}{\sqrt{n}} \sum_{j=1}^{n} f \circ T^{j}\right)^{-1}$ have nondegenerate limit points.

Let $\Omega=\langle-1,1), \beta$ be a $\sigma-a l g e b r a$ of Borel sets on Ω and $\mu=\frac{1}{2} m$ be a probability measure on (Ω, B) where m is the Lebesgue measure.

We define a function ψ on the interval $\langle-1,3$) such that $\Psi(\omega)=\omega$ for $\omega \in\langle-1,1)$ and $\Psi(\omega)=\omega-2$ for $\omega \in(1,3)$. If $0 \leq a<2$ we define $T_{a}(\omega)=\psi(\omega+a)$. Evidently, T_{a} is a one-to-one bimeasurable and measure preserving transformation of Ω onto itself. According to [3], the dynamical system ($\Omega, \mathcal{B}, T_{a}, \mu$) is of zero entropy and it is ergodic for a irrational.

For $n=1,2, \ldots$ and $\omega \in \Omega$ we define $r_{n}(\omega)=\omega-\frac{[n \omega]}{n}$ (where [n ω] is the integer part of the number $n \omega$). Evident$l y$, for $\omega \in \Omega$ it is $0 \leq r_{n}(\omega)<\frac{1}{n}$ and there is a unique number $j \in\{-n, \ldots, n-1\}$ such that $\omega=\frac{j}{n}+r_{n}(\omega)$. One can easily see that whenever $a=\frac{k}{n}, k \in\{1 \ldots, 2 n-1\}$, we have $r_{n}\left(T_{a}^{i} \omega\right)=r_{n}(\omega)$.

Lemma. Let m be a positive integer and $a=\frac{k}{n}$ where k, n are positive integers, $k<2 n$. Let the greatest common divisor of k and $2 n$ be equal to 1. Then for $\omega \in \Omega$ it holds $\sum_{y=1}^{2 m m} T_{Q}^{j} \omega=$ $=m\left(2 n \cdot r_{n}(\omega)-1\right)$.

Proof. For $\omega \in \Omega, T_{a} \omega, \ldots, T_{a}^{2 n} \omega$ differ mutually and $\omega=T_{a}^{2 n} \omega$. Therefore, $\sum_{j=1}^{2 \sum_{i}} T_{a}^{j} \omega=\sum_{j=0}^{n-1}\left(\left(-1+\frac{j}{n}+r_{n}(\omega)\right)+\right.$ $+\left(1-\frac{j+1}{n}+r_{n}(\omega)\right)=2 n \cdot r_{n}(\omega)-1$. From $\omega=T_{a}^{2 n} \omega$ we get that $2 \sum_{j=1}^{m \cdot m} T T_{a}^{j} \omega=m \cdot \sum_{j=1}^{2 m} T_{a}^{j} \omega$ which finishes the proof.

Theorem 1. There exists a real number $a, 0<a<2$, and an increasing sequence ($n_{j} ; J=1,2, \ldots$) of positive integers such that for $j \rightarrow \infty$ the distributions of $\frac{1}{n_{j}} \sum_{j=1}^{2 n} \sum_{d}^{j} I_{d} \circ T_{a}^{j}$ (where I_{d} is the identity mapping of Ω onto Ω) converge weakly to the u niform distribution on $(-1,1)$.

Proof. Let k_{1} and n_{1} be any two positive integers such that $k_{1} \leq n_{1}$ and the greatest common divisor of k_{1} and $2 n_{1}$ is equal to 1. We define $a_{1}=\frac{k_{1}}{n_{1}}, n_{2}=2 k_{1} \cdot n_{1}^{4}$ and $k_{2}=2 k_{1} \cdot n_{1}^{3}+1$. Thus, it is $\frac{k_{1}}{n_{1}}+\frac{1}{n_{2}}=\frac{k_{2}}{n_{2}}$.

We can easily convince ourselves that the greatest common divisor of k_{2} and $2 n_{2}$ is equal to 1 . In the same way as we have derived k_{2} and n_{2} from k_{1} and n_{1}, we derive also k_{j+1} and n_{j+1} from k_{j}, n_{j} and set $a_{j+1}=\frac{k_{j+1}}{n_{j+1}}$, $=$ $=2,3, \ldots$. In this way we obtain the numbers $a_{j}=\frac{k_{j}}{n_{j}}=$ $=\frac{k_{1}}{n_{1}}+\sum_{i=2}^{j} \frac{1}{n_{j}}, j=1,2, \ldots$, where the greatest common divinor of k_{j} and $2 n_{j}$ is equal to 1 .
The sum $a=\frac{k_{1}}{n_{1}}+\sum_{i=2}^{\infty} \frac{1}{n_{i}}$ is inite and $a_{j} \xrightarrow[n_{j} \rightarrow \infty]{ }$ a. By the Lemma, for any positive integer j, the sum $\frac{1}{n_{j}} \sum_{i=1}^{2 \sum_{i}^{j}} I_{d} \cdot T_{a_{j}}^{i}$ has the
uniform distribution on (-1.1). Let $I_{j}=\left\{\omega: \frac{1}{n_{j}^{2}}<r_{n_{j}}(\omega)<\right.$ $\left.<\frac{1}{n_{j}}-\frac{1}{n_{j}^{2}}\right\}, j=1,2, \ldots$. Evidently, $\mu L_{j}=1-\frac{2}{n_{j}}$. For $\bar{a}_{j}=$ $=a-a_{j}$ we have $\bar{a}_{j}=\sum_{i=}^{\infty} \sum_{j+1} \frac{1}{n_{i}} \leq \frac{1}{k_{j} \bullet n_{j}^{4}}$. Assuming $k_{j}>2$ we get that for $\omega \in L_{j}$ and $1 \leq i \leq 2 n_{j}^{2}$ it is $\left|T_{a_{j}}^{i} \omega-T_{a}^{i} \omega\right| \leq \frac{2}{k_{j} \cdot n_{j}^{2}} \cdot$ Thus, $\left|\sum_{i=1}^{2 n_{j}^{2}} T_{a_{j}}^{1} \omega-\sum_{i=1}^{2 n_{j}^{2}} T_{a}^{1} \omega\right| \leq \frac{4}{K_{j}}$. Therefore,

$$
\mu\left\{\left|\frac{1}{n_{j}} \sum_{i=1}^{2 m_{j}^{2}} I_{d} \cdot T_{a_{j}}^{i}-\frac{1}{n_{j}} \sum_{i=1}^{2 n_{j}^{2}} I_{d} \cdot T_{a}^{i}\right|>\frac{1}{n_{j}-k_{j}}\right\} \underset{j \rightarrow \infty}{\longrightarrow} 0
$$

Hence, we obtain that the measures $\mu\left(\frac{1}{n_{j}} \sum_{i=1}^{2 \sum_{i}^{2}} I_{d} \cdot T_{a}^{j}\right)^{-1}$ converge weakly to the uniform distribution on $(-1,1)$.

Let us suppose that the number a is not irrational. Then for some positive integers $n, k, k<2 n$, we have $a=\frac{k}{n}$. According to the Lemma, the sum $\frac{1}{m \cdot n} \sum_{i=1}^{2 m_{1}^{2} n^{2}} I_{d} \circ T_{a}^{i}$ has the uniform distribution on ($-m, m$) for any positive integer m. This contradicts the fact that the measures $\mu\left(\frac{1}{n_{j}} \sum_{i=1}^{2 n_{i}^{2}} I_{d} \circ T_{a}^{i}\right)^{-1}$ converge weakly to the uniform distribution on $(-1,1)$. This completes the proof.

Let us assign β_{1} the σ-algebra of Borel sets on the real line R.

Theorem 2. Let ν be a probability measure on ($\mathbb{R}, \mathcal{B}_{1}$) which is absolutely continuous with respect to the Lebesgue measure m with density function g.
If the function g is symmetric and nonincreasing on $\langle 0, \infty$) then there exists a dynamical system ($\Omega, \mathcal{R}, T, \mu$) of zero entropy, an increasing sequence ($n_{j} ; j=1,2, \ldots$) of positive integers and a measurable function f on Ω such that the distributions
of $\frac{1}{n_{j}} \sum_{i=1}^{2 \sum_{i}^{2}} f \in I^{1}$ converge weekly to ν.
Proof. Let ($\Omega^{\prime}, \beta^{\prime}, \mu^{\prime}$) be the probability space used in the previous sections (ice. $\Omega^{\prime}=\langle-1,1), \beta^{\prime}$ is the σ-algebra of Bores sets on Ω^{\prime} and $\mu^{\prime}=\frac{1}{2} m$). In accordance $w i t h$ the assumptrons of the theorem $g(0)=$ sup g. For $y \in\langle 0, g(0)\rangle$ let us define $h(y)=\sup \{x: g(x)=y\} . A c c o r d i n g$ to the Pubini theorem we have $\int_{0}^{g(0)} 2 h(y) d y=\int_{-\infty}^{\infty} g(t) d t=1$ (thus $\left.g(0)>0\right)$. Let (Ω, Ω, μ) be the product of probability spaces ($\Omega^{\prime}, \beta^{\prime}, \mu^{\prime}$) and ($\Omega^{\prime \prime}, \beta^{\prime \prime}, \mu^{\prime \prime}$) where $\Omega^{\prime \prime}=\langle 0, g(0)\rangle, \beta^{\prime \prime}$ is the $\sigma^{\prime}-a l g e b r a$ of Borel sets on Ω^{n} and $\mu^{n} \Lambda=\int_{A} 2 h(y) d y$ for $A \in \mathcal{B}^{n}$. Let a $\in(0,2)$ be from Theorem 1. For $(x, y) \in \Omega$ we define $T(x, y)=(\psi(x+a), y)$; then $(\Omega, \mathcal{R}, T, \mu)$ is a dynamical system. Let us define probability measures $\mu_{y}: A \mapsto \mu^{\prime}\{x:(x, y) \in \Lambda\}$, $y \in \Omega^{n}$ on the measure space (Ω, B). It holds that $f A=$ $=\int \mu y^{A} d \mu^{\prime \prime}(y), A \in \Omega$, and for each $y \in \Omega^{\prime \prime}$ the dynamical system ($\Omega, \Omega, T, \mu_{Y}$) is isomorphic to the system used in Theorem 1 (the measures $\mu_{y}, y \in \Omega^{\prime \prime}$, are the ergodic parts of μ, compare [4]).

On the set Ω let us define a function $f:(x, y) \mapsto x \cdot h(y)$. For a real number z and for $y \in \Omega^{\prime \prime}$ let us set $F_{j}(z)=\mu_{y}\{x$: $: f(x, y)<z\}$. According to the Fubini theorem, $\mu\{\omega \in \Omega: f(\omega)<$ $<z\}=\int_{0}^{g(0)} 2 h(y) P_{y}(z) d y=\int_{0}^{g(0)}\left(\int_{-\infty}^{z} x_{<-h(y), h(x)\rangle}(x) d x\right) d y=$ $=\int_{-\infty}^{x} g(t) d t$. Hence we obtain that $\nu=\mu f^{-1}$.

Let us assign $s_{j}=\frac{1}{n_{j}} \sum_{i=1}^{2 m_{j}^{2}} \rho \circ T^{1}, j=1,2, \ldots$. By Thorem 1, the measures $\mu_{\mathrm{y}}\left(\frac{1}{n_{j}} \sum_{i=1}^{2 n^{2} j} \mathrm{f} \circ \mathrm{T}^{1}\right)^{-1}$ converge weakly to the uniform distribution on $(-h(y), h(y))$, ie. to $\mu_{y^{\prime}} \mathrm{f}^{-1}$.

For $y \in \Omega^{n}$ and $j \in\{1,2, \ldots\}$ let $\varphi_{y}^{(j)}$ be the character-

Fistic function of the measure $\mu_{y^{8}} \mathrm{~s}^{-1}$ and let ρ_{y} be the characteristic function of the measure $\mu_{\mathrm{y}^{\prime}} \mathrm{r}^{-1}$. It holds that $\varphi_{\mathrm{y}}^{(\mathrm{j})} \xrightarrow[j \rightarrow \infty]{ } \varphi_{\mathrm{y}}$ (uniformly on each compact subset of \mathbb{R}). Let us denote $\varphi^{(j)}$ the characteristic function of $\mu \mathrm{s}_{j}^{-1}$ and φ the characteristic function of $\mu \mathrm{f}^{-1}$. Evidently, it is $\varphi^{(j)}=$ $=\int \varphi_{\mathbf{y}}^{(j)} \mathrm{d} \mu^{\prime \prime}(\mathrm{y})$ and $\varphi=\int \varphi_{y} \mathrm{~d} \mu^{\prime \prime}(\mathrm{y})$. It holds that $\varphi^{(j)} \longrightarrow \varphi$. Hence we obtain that the measures $\mu \mathrm{s}_{\mathrm{j}}^{-1}$ converge weakly to ν which finishes the proof of the theorem.

Remark. If $b=\int g(\sqrt[3]{|x|}) d x<\infty$ then $\int f^{2} d \mu \leqslant \int 2 h(y)$. - $\left.h^{2}(y) d y\right)=b<\infty$ and $f \in L^{2}(\mu)$.

References
[1] D. VOLNY: The central limit problem for strictly stationry sequences, PhD thesis 1984, Mathematical Institute,Charles University, Prague (in Czech).
[2] P. HALL and C.C. HEYDE: Martingale Limit Theory and its Applications, Academic Press, New York, 1980.
[3] P. WALTERS: Ergodic theory - introductory lectures, Lecture Notes in Math. 458, Springer-Verlag, Berlin,1975.
$[4]$ J.C. OXTOBY: Ergodic sets, Bulletin of the American Mathemetical Society 58(1952), 116-136.

Matematický ústav, Univerzita Karlova, Sokolovská 83, 18600 Praha 8, Czechoslovakia
(Oblatum 10.10. 1984)

