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COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE 
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NOTĚ O N THE NUMBER OF MONOIDS OF ORDER n 
Václav KOUBEK, Vojtěch RODL 

Abstract; We derive upper hounds for the number of monoids 
with n elements* As a consequence, we obtain that almost all n-
element monoids are endomorphism monoids of graphs with en logp & 
vertices for some constant c>0* % 

Key words: Monoid, endomorphian monoid of graphs* 

Classification? 20M99, 05C99 

We recall that a semigroup S with zero 0 is oalled three-

nilpotent if for each triple x, y, z of elements'of S, i*y.z « 0* 

Analogously, a monoid M (i.e. a semigroup with a unity 1) is 

three-nilpotent if for each triple x, y, z of elements of S dif

ferent from 1 we have x.y.z » 0* 

We set 

S(n) is the number of all semigroups on an n-element set X, 

S^(n) is the number of all three-nilpotent semigroups on an n-

element set X, 

M(n) i s the number of a l l monoids on an n-element set X, 

ItL(n) i s the number of al l three-nilpotent monoids on an n-ele

ment set X, 

G(n) i s the number of a l l groups on an n-element set X* 

It follows immediately from the result of 13} that 

(1) G(n)£n! n
c n 2 / 3 l o g 2 n , where c « 2/1~(£)2 / 3 
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The asymptotic formulas for S (n ) and S.-,(n) were investiga

ted by B.J. Kleitman, B.R. Rothschild and J.H. Spencer 151* They 

proved 

Theorem 1: S(n) - S.j{n) (1 + o(1)) - ( S - ) fn(t))(1 + o(1))-

- <W 1 ) + W + -n ( tn + 1 ) ) { 1 + °<1»» 

where fn(t) - (
n) t1+*n"** and tn is a natural number such that 

f (tn)?f (t) for every t » 1t2f...,n. Moreover, 

*n - drr**1 +°0)) . 

The aim of this note is to use the Theorem 1 to derive si

milar formula for monoids. We prove: 

Theorem 2: M(n+1) - M^(n+1) (1+o(D) - (n+1)S(n)(1+o(D). 

Theorem 2 has applications in graph theory. It is well-known 

fact [ 43 that every monoid is isomorphic to the monoid of all 

endomorphisms of a graph. For a monoid M denote by $(M) the mi

nimum size of a set V such that there is a graph (V,E) for which 

its endomorphism monoid is isomorphic to M. The following has 

been shown by L. Babai £13 and the present authors [6]: 

Proposition ft: There is a oonstant o with 

$ (M) £ o n 3 / 2 

for any monoid M with n elements. 

On the other hand we showed (thereby disproving conjecture 

of L. Babai and J. Neaetfil - see 16}): 

Proposition 4: There exists a constant o:>0 such that for 

every natural number n there exists a three-nilpotent monoid M 

with n elements such that 
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$(M)£cn x/logg n 

and there exists a constant d such that for eTery three-nilpo-

tent monoid M with n elements 

$(M)-£ dn log2 n 

Combining Theorem 2 and Proposition 4 we obtain 

Corollary 5: For almost all monoids M with n elements 

$(M)£dn log2 n 

It remains to pro TO Theorem 2* For a monoid M denote by 

Gr(M) the set of all element0 x of M ouch that x.y * 1 for some 

element y of M. If M is finite, then clearly Gr(M) is a subgroup 

of M and M - Gr(M) is a sub semigroup of M. Since 1 6 Gr(M) we ha-

Te Gr(M)4-0. For eTery xeGr(M) , the mappings f(y) - x.y, g(y) • 

- y.x map the set M - Gr(M) bijactively on itself (000 t2l). 

Hence we obtain: 

Proposition 6: Let X be an n-element set and let k be a na

tural number with 0<k4n. Assume that the following are giTen 

a) a subset Y of X of size k; 

b) a group G on the set Y with a set A of generators; 

e) a semigroup S on the set X - Y| 

d) two mappings -£9rsA>x(X - Y)—.*• X - Y such that for eTe

ry ac A, l(a*-)9 r(a,-) are bisections of X - Y into itself. 

Then there exists at most one monoid M on X such that 

(1) Gr(M) * G and S is a sub semigroup of M; 

(ii) for eTery a€A9 xeX - Y we haTe a.x -»*l(a9x)9 x.a • 

« r(a9x). 

On the other hand eTery monoid is determined by a)9b)9c) and d). 
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Clearly, 

1) there are ( A ) subsets X of X of slse k* 

2) there are G(k) groups G, and we can assume that 

U U l o g g k* 

3) there are S(n - k) semigroups S% 

4) there are at most (n - k) ! 2 l o * 2 * mappings £ sad r 9 thus 

M(n) *gtA (*) G(k) S(n - k) (n - k ) I 2 l o * 2 k . 

First observe that the following holds: 

Lemma 8: There exists nQ such that for every i ^ i Q and eve

ry natural number k with 

|.JL|2r k->i * • -**•• 

l{n^r}^ l i{k-1)(2n-k)(1+o(1)) 

.Proofs By Theorem 1 we get that there exists nQ such that 

for n 2 n 0 

«£-*7 n-k\ J + ( n - k - t ) 2 

S(n-k) S I t ;t 
iteX± - (1 + o(1)) -4 

S(n-1) ^ in-1) t1+(n-1-t)2 

<c y 4:-(2n-k-1-2t)(k-1) M W 1 ^ ^ ] 
* * * (1+©<1»* a(k-1)(2n-k) (1+o(1» 

where the second sum la taken over a l l t with 

[°-s »83H - t r f L1-1-*-feJ • D 

How we shall finish the proof of Theorem 2. We shall use the 

following easy consequence of (1)s 

for a sufficiently large 

(2) a(fO si n! 2 n 
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mad memo* f%r any * .«* 

(3) G(k) .£kl nk 

Using (2)»(3) and Lemma 8 wo got the txiettnot pf n.j such 

that for n^xu 

K&, * k | ( j ) .no t(^)o2Xog2k l eaw?) * (?) -CD*. 

• - L , (S)-'»kt(--k).32l0S2k atafiirf 
A-niJ+1 U ' S(n) 

-* - * (a) 2 ( B ! ) Z .(&H-.5)(1-H>(1)) + 

• 5 , (S)w*-«-*>n*-*' KSI . 

Thus M(n)^nS(n-1) (1+o(1)). Obviously, If wo add the new unity 

to a three-nilpotent semigroup wo obtain a three-nilpotent mo

noid and hence M3(n)> nS3(n-1). 

Thus wo can summarise 

a l fo - l ) (1+o(1));rM(n^M3(n)>nS3(n-1)) - nS(n-1) (1+o(1)) 

and Theorem 2 I s prored. 
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