Commentationes Mathematicae Universitatis Caroline

Václav Koubek; Vojtěch Rödl
 Note on the number of monoids of order n

Commentationes Mathematicae Universitatis Carolinae, Vol. 26 (1985), No. 2, 309--314
Persistent URL: http://dml.cz/dmlcz/106370

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

NOTE ON THE NUMBER OF MONOIDS OF ORDER n
 Václav KOUBEK, Vojtēch RODL

Abstract: We derive upper bounds for the number of monoids with n elements. As a consequence, we obtain that almost all nelement monoids are endomorphism monoids of graphs with on $\log _{2} n$ vertices for some constant $\mathrm{c}>0$.

Key words: Monoid, endomorphism monoid of graphs.
Classification: 20M99, 05C99

We recall that a semigroup S with zero 0 is called threenilpotent if for each triple x, y, z of elementa of $S, x . y . z=0$. Analogously, a monoid M (i.e. a semigroup with a unity 1) is three-nilpotent if for each triple x, y, z of elements of S different from 1 we have $x_{0} y, z=0$.

We set

$S(n)$ is the number of all semigroups on an n-element set X, $S_{3}(n)$ is the number of all three-nilpotent semigroups on an n element set X,
$M(n)$ is the number of all monoids on an n-element set X, $M_{3}(n)$ is the number of all three-nilpotent monoids on an n-element set X,
$G(n)$ is the number of all groups on an n-element set X.
It follows immediately from the reault of [3] that
(1) $G(n) \leqslant n!n^{\mathrm{cn}^{2 / 3} \log _{2}} n$, where $c=2 / 1-\left(\frac{1}{2}\right)^{2 / 3}$

The asymptotic formulas for $S(n)$ and $S_{3}(n)$ were investigated by D.J. Kleitman, B.R. Rothschild and J.H. Spencer [5]. They proved

Theorem 1: $S(n)=S_{3}(n)(1+o(1))=\left(\sum_{t=1}^{n} f_{n}(t)\right)(1+o(1))=$

$$
=\left(f_{n}\left(t_{n}-1\right)+f_{n}\left(t_{n}\right)+f_{n}\left(t_{n}+1\right)\right)(1+o(1))
$$

where $f_{n}(t)=\binom{n}{t} t^{1+(n-t)^{2}}$ and t_{n} is a natural number such that $f_{n}\left(t_{n}\right) \geq f_{n}(t)$ for every $t=1,2, \ldots, n_{n}$ Moreover, $t_{n}=\frac{n}{2 \ln _{n}}(1+o(1))$.

The aim of this note is to use the Theorem 1 to derive aimilar formula for monoids. We prove:

$$
\text { Theorem 2: } \quad M(n+1)=M_{3}(n+1)(1+0(1))=(n+1) S(n)(1+0(1))
$$

Theorem 2 has applications in graph theory. It is well-known fact [4] that every monoid is isomorphic to the monoid of all endomoxphisms of a graph. For a monoid M denote by $\Phi(M)$ the minimum size of a set V such that there is a graph (V, E) for which its endomorphism monoid is isomorphic to M. The following has been shown by L. Babai [1] and the present authors [6]:

Proposition 3: There is a constant c with

$$
\Phi(M) \in \subset n^{3 / 2}
$$

for any monoid M with n elements.
On the other hand we showed (thereby disproving conjecture of L. Babai and J. Neǎetřil - see [6]):

Proposition 4: There exists a constant $c>0$ such that for every natural number n there exiats a three-nilpotent monoid M with n elements such that

$$
\Phi(u) \geq \text { on } \sqrt{\log _{2} n}
$$

and there existe a constant d such that for every threenilpotent moneid M with n elements

$$
\Phi(M) \in d n \log _{2} n
$$

Combining Theorem 2 and Proposition 4 we obtain

Corollary 5: For almost all monoids M with n elements

$$
\Phi(M)<d n \log _{2} n
$$

It remains to prove Theorem 2. For a monoid M denote by Gr(M) the set of all elements x of M such that $x . y=1$ for some element y of M. If M is finite, then clearly $G r(M)$ is a subgroup of M and $M-G r(M)$ is a subsemigroup of M. Since $1 \in G r(M)$ we ham ve $\operatorname{Gr}(M) \neq \varnothing$. For every $x \in G r(M)$, the mappings $f(y)=x_{0} y, g(y)=$ = J.I map the set M - Gr(M) bijectively on itself (see [21). Hence we obtain:

Proposition 6: Let X be an n-element set and let k be noturel number with $0<k \leqslant n$. Assume that the following are given
a) a subset Y of X of size k;
b) a group G on the set Y with a set 1 of generators;
c) a semigroup S on the set $X-Y_{;}$
d) two mappings $\ell, r: A X(X-Y) \rightarrow X-Y$ such that for eve-

Then there exists at most one monoid M on X such that
(i) $G r(M)=G$ and S is a subsemigroup of M;
(1i) for every $a \in A, x \in X-Y$ we have $a . x=\ell(a, x), x, a=$ $=r(a, x)$.

On the other hand every monoid is determined by a), b), c) and d).

02early,

1) there are $\binom{n}{k}$ subsets Y of X of sise k
2) there are $G(k)$ groups G, and we can asmume that $|A| \leq \log _{2} \mathrm{k} ;$
3) there are $S(n-k)$ semigroups S_{5}
4) there are at most $(n-k) t^{2} \log \varepsilon_{2}$ mappinge l and r, thrie
$M(n) \leq \sum_{n=1}^{m}\binom{n}{k} G(k) S(n-k)(n-k)!^{2} \log _{2} k$.
Pirst observe that the following holdss
 ry natural number k with

$$
\left\lfloor\frac{n}{2}\right\rfloor \geq k>1 \text { we have }
$$

$\frac{S(n-k)}{S(n-1)} \leq \frac{1}{i^{(k-1)(2 n-k)(1+0(1))}}$
Proef: By Theorem 1 we get that there exiets n_{0} mach that for $n \geq n_{0}$

$$
\frac{S(n-k)}{S(n-1)}=\frac{\sum_{t=1}^{n-k}\binom{n-k}{t} t^{1+(n-k-t)^{2}}}{\sum_{t=1}^{n-1}\binom{n-1}{t} t^{1+(n-1-t)^{2}}}(1+o(1)) \leq
$$

$\leq \sum t^{-(2 n-k-1-2 t)(k-1)}(1+o(1)) \leq \frac{1}{n^{(k-1)(2 n-k)(1+0(1))}}$
where the second sum is taken over all t with

$$
\left\lceil 0.9 \frac{(n-k)}{20(n-k)}\right\rceil \leq t \leq\left\lfloor 1.1 \frac{n-k}{22 n(n-k)}\right\rfloor
$$

Now we shall finish the proof of Theorem 2. We whall use the following easy consequence of (1):

For a suffioiently large
(2)

$$
Q(n) \leq n \mid 2^{n}
$$

and hemoe for any k six

(3)

$$
G(k) \leq k 1 n^{k}
$$

Using (2),(3) and Leama 8 we get the existence of n_{1} such that for $n z_{n_{1}}$
$\frac{M(n)}{S(n-1)} \leq \sum_{n=1}^{n}\binom{n}{k} G(k)[(n-k)!]^{2 \log _{2} k} \frac{S(n-k)}{S(n-1)} \leq\binom{ n}{1}+\binom{n}{2} 2(n!)^{2}$.
$\cdot \frac{S(n-2)}{S(n-1)}+\sum_{k=3}^{\lfloor m / 2\rfloor}\binom{n}{k} k!n^{k}[(n-k)!]^{2 \log _{2} k} \frac{S(n-k)}{S(n-1)}$
$+\sum_{k=[m / 2\rfloor+1}^{m}\binom{n}{k} k!n^{k}[(n-k) 1]^{2 \log _{2} k} \frac{S(n / 2)}{S(n)} \leqslant$
$\leq n+\binom{n}{2} 2(n l)^{2} \frac{1}{n^{(2 n-2)(1+0(1))}}+$
$+\sum_{k=3}^{\lfloor m / 2\rfloor}\left(\frac{n}{k}\right) k!n^{k}\left[(n-k) 1^{2 \log _{2} k} \frac{S(n-k)}{S(n-1)}+\right.$
$+\sum_{k=[m / 2\rfloor+1}^{\infty}\binom{n}{k} k!n^{k}[(n-k)!]^{2 \log _{2} k} \frac{S(n / 2)}{S(n)} \leq n+o(1)$,
Thus $M(n) \leq n S(n-1)$ ($1+0(1)$). Obviously, if we add the new unity to a threo-nilpotent semigroup we obtain a three-nilpotent monoid and hence $H_{3}(n) \geq \mathrm{nS}_{3}(n-1)$.
Thus we can sumasarize
$\left.n \$\{n-1)(1+0(1)) \geq M(n) \geq M_{3}(n) \geq n S_{3}(n-1)\right)=n S(n-1)(1+0(1))$
and Theorem 2 is proved.

Reference

[1] L. BABAI: On the abstract group of automorphisms "Combinam torios" Proc. 8th British Comb. Conf. Swansea 1981, London Math. Soc. Leoture Hote 52, 1-40.
[2] A.H. CLIPFORD, G.B. PRESTON: The algebraic theory of semigroups, Amer. Math. Soc. Providence, Rhode Island 1967.
[3] P.X. GALLAGHER: Counting finite groups of given order, Math. Z. 102(1967), 236-237.
[4] Z. HRDRIfN, A. PULTR: Symmetric relations (undirected graphs) with given semigroups, Monatsh. Math. 69 (1965), 318-322.
[5] D.J. KLEITMAN, B.P. ROTHSCHILD, J.H. SPENCER: The number of semigroups of order n, Proc. Amer. Math. Soc. 55 (1976), 227-232.
[6] V. KOUBEK, V. RÖDL: On the minimum order of graphs with given semigroup, J.of Comb. Theory B,36(1984),135-155.

Matematicko-fyzikální fakulta, Univerzita Karlova, Maloistranśḱ nám. 25, Praha 1, Czechoslovakia

Math. Dept. Technical University, Husova 5, 11519 Praha 1, Czechoslovakia

