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COMMENTATIONES MATHEMATICAE UNIVERSITAT1S CAROLINAE 

26,4 (1985) 

CANONICAL LIPSCHITZ STRUCTURES ON COMPACT 
HUBERT CUBE MANIFOLDS 

Jouni LUUKKAINEN 

Abstract: Let d be one of the Lipschitz homogeneous metrics on the 
Hilbert cube Q discpvered by Vaisala and Hohti. We show that every compact Q-
manifold is homeomorphic to a Lipschitz (Q,d)-manifold of the form M * (Q,d) 
where M is a compact PL n-submanifold of B for some n and that such an 
M x (Q,d) is unique up to a Lipschitz homeomorphism. 

Key words: Hilbert cube, Lipschitz homeomorphism, Lipschitz manifold, 
Q-manifold. 

Classification: 57N20 

1# Existence. A homeomorphism f: (X,d) -• (Y,d*) of metric spaces is a 

Lipschitz homeomorphism if there' is L >_ 1 such that 

d(x,y)/L < df(f(x),f(y)) < Ld(x,y) (x,y € X). 

Let s be-a sequence s1 _> sp _> ... of positive real numbers converging to 

zero such that (B - {1,2,...}) 

R(s) - sup ^sk/sk+1
: k € M} < ». 

Let Q denote the Hilbert cube Q -» [-1,1] equipped with the compatible 

metric d, 

d(x,y) - sup {sk|xk - yk|: k € »}. 

Definition 1. A Lipeehitz Q -manifold is a separable metric space whose 

every point has a neighborhood Lipschitfc hofceoaorphic to Q . 

There is an essentially equivalent alternative definition "based on atlases; 

ef. [7, 3.3-3.7L Definition 1 is natural because A. Hohti P*, 5.3] has proved 

that every connected Lipschitz Qv-manifoldl (and thus, in particular, Q itself) 

- 661 -



is homogeneous with respect to Lipschitz homeomorphisms and because, on the ot­

her hand, J. Vaisala [12, 3.5] has proved that this is never true of Q if the 

condition R(s) < • is not satisfied. The model cube Q is natural also be-
s 

cause it is an absolute extensor for Lipschitz maps [8, Theorem 1], which im­

plies, as in [7, 5-12], that every Lipschitz Q -manifold is an absolute neigh­

borhood extensor for locally Lipschitz maps. 

Example 2. For the cartesian product of finitely many metric spaces use 

any of the standard Lipschitz equivalent metrics. Define a Lipaohitz n-mani-

fold (n € If U (0)) by means of the model cube In • [-1,1]n (see [7]). Since 

R(s) < », the natural homeomorphism 

z* *% + v <x»y> - <- , . •• • • v . • * . » . • • • > . 

is a Lipschitz homeomorphism. Hence, if M is a Lipschitz n-manifold, M x Q 

is a Lipschitz Q -manifold. 

Note that every PL homeomorphism of compact polyhedra in 1 is a Lip­

schitz homeomorphism [7» 2.18] and that, thus, every PL manifold in 3R is a 

Lipschitz manifold. (For PL topology we refer to [10].) It now immediately fol­

lows from well-known results on (topological) Q-manifolds [2] that there exists 

a Lipschitz Q -manifold structure on every compact Q-manifold: 

Proposition 3. If X is a oompaot Q-manifold* there is a compact PL n-

manifotd M in URn for some n such that X is homeomorphio to the Lipschitz 

Q -manifold M x Q , 

Proof. By [2, 36.2] there is a compact polyhedron P in some B such 

that X is homeomorphic to P x Q . Choose a regular neighborhood M of P in 

B . Then M is a compact PL n-manifold. Since P and M are simple homotopy 

equivalent, P x Q and M x Q are homeomorphic by [2, 29.-*]. Hence, X is ho­

meomorphic to M x Q , which is a Lipschitz Q -manifold by the above, o 

Proposition 3 is an observation of Hohti and it is published with his per­

mission. Hohti has since constructed a Lipschitz Q -manifold structure on every 

Q-manifold [5]. 

2- Uniqueness. We next show that a Lipschitz Q-manifold structure on a 

compact Q-manifold X induced by a homeomorphism X * H x Qfl as in Proposition 

3 is unique up to a Lipschitz homeomorphism and may thus be called eanonieal. 
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Theorem k. Let M. c B - be a compact PL n.-manifold* i»1,2, st«Jh that 

M x Q and M0 x Q are homeomorphio. Then M x Q and M0 x Q are Lip-
' S c. S I S c. S 

8ohitz homeomorphio. 

Proof. By [2, 38.1] (and the proof of [2, 29.5])• M. and Mg are simple 

homotopy equivalent. Hence, by [13, Theorem 25], if we choose a sufficiently 

large n ,> max(n1tn0) and identify B x with B x x o c B , every regular 

neighborhood of M. in B is PL homeomorphic to every regular neighborhood 
n n.j 

of M0 in B . Choose a regular neighborhood N. of M. in B * . Then 
d n-n. 1 n x 

N! » N. x I i is a regular neighborhood of M. in B , because it collapses 
onto N. and, thus, onto M.. Hence, N! and NJL are PL homeomorphic. Since 

1 l l * : n-n1 n-n 
M. is PL homeomorphic to N., it follows that M1 x I ' and M0 x I

 d are 
1 1 i n-n. d 

PL homeomorphic. Since Q is Lipschitz homeomorphic to X x * ft » this im­

plies that M. x Q and MpX Q are Lipschitz homeomorphic. o 

It is not known whether every two compact Lipschitz Q -manifolds are Lip­

schitz homeomorphic if they are homeomorphic. This problem is equivalent to the 

problem whether every compact Lipschitz Q -manifold is Lipschitz homeomorphic to 

a Lipschitz Q -manifold with a canonical structure. Our final result shows that 

this is the case for some manifolds of Example 2. 

Theorem 5. Suppose that M is a compact Lipschitz manifold and that ei~ 

ther dim M » n or dim M • n-1, n * k, and 3M « 0. Suppose also that M can 

be topolog.ically embedded into B . Let p « 6 if n -- U or 5 and let 

p « n otherwise. Then there is a compact PL ^-manifold N in B p svch that 

M x Q is Lipschitz homeomorphio to N x Q . 

Proof. Suppose first that M is an n-manifold. We reduce the case n » k 

or 5 to the case n « 6 replacing M by M x I ~n. It suffices to find a PL 

n-manifold N in B homeomorphic to M, because then M and N are Lip­

schitz homeomorphic by the generalization [11, k.Q] of a theorem of D. Sullivan. 

Choose a manifold S c B homeomorphic to M and an open collar c: 3S x 

[0,1) -> S of 3S in S. Then T » S ̂ c[3S x [0,1/2)] is homeomorphic to S 

and c[3S x (0,1)] is an open bicollar neighborhood of 3T » c[3S x {1/2}] in 

B . Hence, by [6, I, 5.1 and U.1] if n >, 6 or by classical results [9] if 

n £ 3, there is a homeomorphism f: "Bn •*• B n such that N « fT is a PL sub-

manifold of B n . 

Suppose now that M is an (n-1)-manifold. By 11, p. 61] IT n >. 5 or by 

classical results if- n £ 3» there is a locally flat embedding f: M •* B . If 

S is a component of fM, by [3, 27.10] B n ^ S consists of two components, 

whose closures are n-manifolds with boundary S. Hence, there is an embedding 
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g: M x I -*• B n . Thus, replacing M by M x I reduces the situation to the 

first case of the theorem, a 
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