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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

27,1 (1986) 

ON PSEUDO-RADIAL SPACES 
A. V. ARHANGEUSKli; R. ISLER and G. TIRONIO 

Abstract. A new cardinal invariant, the quasi-character, is 
introduced and some of its i n t e r e s t i n g properties are studied, 
p a r t i c u l a r l y in the class of chain-net or pseudo-radial spaces. 
Main results are that the quasi-character coincides with the tight
ness for pseudo-radial monolithic spaces and, under GCH, for pseu
do-radial spaces which are Hausdorff and compact or have cardinali
ty not greater than x^ . However still open is the problem if qu
asi-character and tightness are the same in the class of pseudo-
radial spaces. Introducing the notion of tightness with respect to 
a family of subsets, upper bounds for the cardinality of the clo
sure of a set are developed in a general topological space. 

Key words and phrases: Cardinal invariant, pseudo-radial spa
ce, chain-net space. 

Classification: Primary 54A25 

Secondary 54055 

1. Introduction and basic definitions. Pseudo-radial or chain-

net spaces were first introduced by Herrlich 191 in 1967. The sa

me class of topological spaces was then considered by Meyer, Mrow-

ka, Rajagopalan,... [143,Cl6j, and systematically examined by Ar-

hangel'skii [1],[2]. Some questions presented there stimulated the 

publication of other papers [11] , [17] ,[ 8.1,1101 , C18T . 

In this section and in section 2 all spaces are supposed to be 

(>K ) This work was developed as a part of the program of the Nati
onal Group "Topology" of the Italian Ministry of Public Education, 
while the first author A.V.A. was a Visiting Professor at the Uni
versity of Trieste under a C.N.R. grant. 
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T,, if not otherwise s tated . We shortly recall the basic equivalent 

definitions of a pseudo-radial or chain-net space: 

Definition A. A topological space X is called pseudo-radial 

or chain-net if, for every non-closed subset A, there are a point 

xe A\ A and a family <p of subsets of X, such that the family (P 

is linearly ore; red by inclusion and 

( i ) PnA-^fc), for every P in (J*-, 

(ii) for every neighbourhood U of x there is P in (P such 

that ?c U • 

(iii) r\<P = ix\. 

Definition B. X is a chain-net or pseudo-radial space if for 

every non-closed subset A of X there are a point xc A\ A and a 

(transfinite) A-sequence (x_: oc < A ) in A converging to x. 
0» 

The following theorem furnishes a useful characterization of 

pseudo-radial spaces. 

Theorem. X is a pseudo-radial space if and only if for any 

non-closed set A there exist a point xe ANA and a subset B of A 

of regular cardinality, such that for any neighbourhood U of x, 

|&\U|-< |B| (see L13). 

Radial or Frt§chet chain-net spaces are topological spaces such 

that every point in "K satisfies the properties of Definitions A or B 

or that one expressed in the theorem (see £2l). 

We now give the following 

Definition 1.1. A subset B of a topological space X is said 

to be topologically directed (in X) if |B| is a regular cardinal 

number and there exists a point x such that for every neighbourhood 

U of x, |B\U|< |B|: In this case we also say that every neighbour

hood U of x contains "almost all" points of B. 
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If X is a Hausdorff space, then the point x is unique. In case the 

point x is unique it will be called the end of B. 

The following definition introduces a new cardinal invariant, 

which seems rather intertsting. 

Definition 1.2. Let X be a topological space and x a point 

of it. We define the quasi-character of X at x the least cardinal 

number of such that, if A is any subset of X and x€A\A, then 

there is a family ^ of subsets of A such that \ y \ ^ t , x£ ¥ 

for any B in y but x € Uy . We denote the quasi-character of X 

at x by q ̂ (x,X). q 7̂  (X) = sup^q^(x,X):x£Xy, is called the quasi-

character of the space X. 

It can be useful sometimes to think at the quasi-character as 

obtained from the following cardinal inva r ian t . 

Definition 1.3. Let X be a topological space and x* ANA. 

The primitive quasi-character of the point x with respect to the 

subset A is the least cardinal number X such that there exists a 

family -y °* subsets of A with the properties as in Definition 

1.2, i.e. I -y | ̂ ^ , x£? for any P in x but x «. D#--

It then follows that q^(x,X) = sup 4 pq % (x , A): A c X and xsA\A}. 

2. Fundamental properties of the quasi-character. Before gi

ving the first simple but important properties of the quasi-charac

ter we recall one more definition 

Definition 2.1. Given a topological space X, a set AcX and 

a point xtl, we call primitive tightness of x with respect to A, 

pt(x,A), the least infinite cardinality of a subset B of A, such 

that xcB (see C5],[12j). 

Proposition 2.1. For any Tx space X, q%(x,X)£ t(x,X). More 

in general, the inequality pq \ (x,A)4 pt(x, A) holds under the same 
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hypothesis. Also the inequality q% (x,X)4 vCx.X) should be noted. 

Proof. Only the last inequality needs to be proved. Let 

i U.: oc <?.} be a family of open sets with & = Y*(x,X), such that 

AU<3C = -CxV Consider K^ = ( O UJ\Uj6+1. Then x$l^, for any 

06 ; U K^ = U0\ i x% hence xe ulf^. In fact for any y fe Up\ i x}, the

re is the least 06 such that ycU \ U,.,; then y c K - • 

Proposition 2.2. For any T« space X, q >r, (X) .£ s(X). 

Proof. Remember that s(X) coincides with the hereditary Sus-

lin number of X. Let x€."K\ A; for any y <£. A take the family V of 

all open neighbourhoods V of y such that x£V~. From t r=U* ( (1f : 

:ys A,r extract a maximal disjoint subfamily 3* . Then | ^ | J ^ S ( X ) , 

x$T for any P in y but x € O"y. 

The strict inequality can hold in the result of Proposition 

2.2, as shown by the following 

Example 1. Let X = Y0 u Yj, where Y. = Ix-CU, i = 0,l and I 

is the unit i n t e r v a l . Let Y, be discrete, while the neighbourhoods 

V of a point (x,0)fcY are V = U x-fOi u (U \ ix\) x il\ , and U is a 

neighbourhood of x in the usual topology of I. Then it is easy to 

s t 
see that X is a T„ compact 1 countable space such that q;r,(X) is 

*o 
countable and s(X) = 2 . 

In what follows, given a set A in a topological space X, we 

shall denote by clx(A) the following 

cl^(A) = Ui B:Bc A and |B| £ a* -

Theorem 2.3* Let X be a T, radial space. Then pqt\(x.A) = 

= pt(x,A) for any subset A of X such that xeANA, 

Proof. Let X = pq^ (x, k)< pt(x, A). Then there is a family^ 

of subsets of A such that | y I 4 'Cf , x#T for any P in y but 

140 -



x c Uf . Since X is radial, there is C cUj , with C topological-

ly directed towards x of regular cardinality not less than 

p t ( x , A ) . Take P' = Pn C ior any P in y and let 7' be the family 

of all the P 's . We have x ^ P ' for any P' in f' and therefore P'c 

c C\U for some neighbourhood U of x . Since C is topologically di

rected, then | P ' | < | C | . From the regularity of |C| since |P'|<|C| 

and | y' | .6 tf< |C| it follows | U x ' I < lcl > which contradicts 

Ur' = c 

As easy corollaries one finds 

Corollary 1. Let X be a T, radial space. Then q\(x,X) = t(x,X) 

Corollary 2 . If X is a T, radial space then q%(X) = t ( X ) . 

So for radial spaces q\(X) coincides with t(X). It is not 

clear if the same equality holds in general also for pseudo-radial 

spaces. The remaining part of this section is dedicated to the in

vestigation of this problem, and several partial answers are given. 

For non pseudo-radial spaces q^(X) can be strictly less than t(X), 

as shown by the following 

Example 2. Let W = -C^ : \ -* *>0*
 and wi ~^\ ' 1 & ̂ i? and 

define X = (W \ <COQ})K tW-̂ \ i c*A ) u{( 4> co^)3 as a subspace of 

W x W, with the product topology. Then q%(x,X) = & for any xeX 

but t(X) = .it, . The first claim needs to be verified only for 

(co , <*>,). If such a point is in A\ A for some subset A of X, we 

can consider the countable family <$ , whose elements are 

Pn = Ar\(fn}*(W1\ - C w ^ ) ) . 

However, the following is an example of a pseudo-radial com

pact T- space X for which pq^(x,A)< pt(x,A) for some subset A of 

X with x e A \ A . The example holds under Martin s Axiom and the 

negation of the Continuum Hypothesis . 
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Example 3. Under (MA + -,CH) it was shown in [23 that X = D x 

is a compact T« pseudo-radial space. Let A be a -3E -product cont

ained in X and xc)(NA. Then pq?t(x,A) = & , since c(A) 6 & (see 

[13, paragraph 5), but pt(x,A) = &. , since x^A and cl (A) = A. 

1 *o 

Proposition 2.4. Let X be a T, pseudo-radial space such that 

q?C (X) £ A • Let AC X be such that y(x,A u{x\) & X+ for every 

x 6 X and cLA = A. Then T = A. 

Proof. By contradiction, suppose A4-A. Then there are z6 ANA 

and Be A topologically directed towards z. Since iz\ = O i U • oc < A } 

with U^ open in Auiz$, we have B = U*-^: OG •< A+J , with |B̂ |--: | B | . 

In fact y (x,B u\x\) Is. y(x,A u<x$) ̂  A+; it is enough to take B ^ 

= B\ U^ . Then cf C|B|) £ A +, since |B| is regular, |B| = cf(|B|)^ 

.* A +. 

Now qi\,(X)^>A implies the existence of a family 3- of sub

sets of B such that I T I ^ A , |P|<|B| for any P in "jr (since z 4. 

£ P), and z e Uy> . But from |P|< |B| # A + it follows that |P| ̂  A 

for any P «. y and then for C = U ^ , |C| * A • -* = A . But zeC" 

gives a contradiction since we supposed z^A = cl* A. 

So we have proved, under the above conditions, that cL(A) = 1 . 
71 

Definition 2.2. Let X be a topological space. We say that 

the pseudo-network weight of X, pnw(X), is not greater than x if 

there exists a family (P of closed subsets of X such that for eve

ry xc X, -Cxi = n4F € P :x€ H , and \<P \ £ V The family 9 will 

be called a pseudo-network of X. 

pnw(X) is the least infinite cardinal number T fulfilling the abo

ve property. 

Proposition 2.5, Let X be a Hausdorff topological space. If 
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A c X and nw(A) # A ( f o r example | A | ^ A ) , then pnw(cl A ) ^ A ^ 

(For T5 spaces nw(clL,A) & ti* .) 

Proof. Let S be a network fo r A such tha t \$\ £ A . For eve

ry x e c l ^ A and every 0 , open neighbourhood of x , there i s B such 

tha t Be An 0 X , x c l and |B| ^ r . There i s also a fami ly | c S, 

w i th 11 l i t such tha t B c U | c O x . Then x e B c U f c ? ^ Consider 

& = ( 0 | : | c S , |P | ^ t V (P i s then a pseudo-network fo r 

c l v ( A ) and \$>\ g hr . Hence pnw(cl / cA)sf \fi | £ A * . 

Propos i t ion 2 .6 . Let X be a Hausdorff topo log ica l space, HC 

c X and |M|£ 2 * . Then pnw(cLM)* 2* . 
At % 

Proof. Since nw(M)£ |M|4 2* , it follows from Proposition 2.5 

that pnw(clAM).6 (2*)* = 1X . 

Proposition 2 .7 . LetX be a T„ pseudo-radial space such that 

q5t (X ) . l A and take a subset McX with |M| £ A,"**. If we assume the 

generalized continuum hypothesis (GCH), then cl*M = "M. 

Proof. Put A = cl^M. Then clA(A) = cl^Ul^M)) = clA(M) = A. 

For any x«X, A uix\c cl^(M u-Cxf). Hence, by Proposition 2.6, 

pnw(Au,*x*)£ pnw(cl̂ (M uUl))£ 2X . 
X + 

Since we assume GCH, 2 = A holds and we have 

y(x,Au4.x*).£ pnw(Au«Cx1) £ A* = 2 A . 

From Proposition 2.4 then 1 = A. But from MccL(H) = A and Ac M 

it follows M = I = A = cl^(M). 

Theorem 2.8. Let X be a pseudo-radial T« space, such that 

t(X) = A +. Under GCH we have 

q*(X) = t(X). 

Proof. We have q \ , ( X ) . * t ( X ) = A*. Let us assume that q x O O < 

<t(X), so that q*,(X)* A . As t(X) = A* there must be a set McX 
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such that |M| = .a+ and clA(M)#=M. But this is impossible for Pro

position 2.7. By contradiction, q?^(X) = t ( X ) . 

Theorem 2.9. If GCH holds, then q%(X) = t(X) for every pseu

do-radial compact Hausdorff space X. 

Proof. Put T = q X OO and assume that f < t ( X ) . From the cha

racterization of the tightness in compact T„ spaces, as the supre-

mum of lengths of free sequences Cl],C4J, it follows that for any 

x & «e<t(X) there is in X a free sequence whose length is ae , 

S = $x : oo < ie I . Let Y = "§. Since X is Hausdorff we have (assuming 

GCH) that |Y|* (( « + ) + )+. In Y we then have ae+-# t(Y) aS *e+++, so 

that t(Y) is one of the following isolated cardinal numbers: *e+, 

-ae or ae . Y is obviously pseudo-radial and so, from Theorem 

2.8, we have qft(Y) = t ( Y ) , i.e. qx,(Y)ir*+. But obviously we also 

have q 1, (Y )£ q it (X) so that q .^(Y) £ r^#e.<ae+, which is in contra

diction with the previous result. 

Theorem 2.10. If GCH holds and X is a pseudo-radial T« space 

then 

t(X)£ max-fq* ( x ) , d ( X ) * . 

Proof. If H = max-tqpt (X) ,d(X)} , then y (X )£ pnw(X)* 2 d ( X ) ^ 

£ 2** = ae + , since we assume GCH. Also q % (X) £ n . From Proposi

tion 2.4 it follows that if cl:je(A) = A, then A = A. So c l ^ U ) = I 

for any Ac X, which implies t(X) =* ?e . 

The following are straightforward consequences 

Corollary 1. For a separable pseudo-radial Hausdorff space 

X, if GCH holds, we have 

t ( X ) = q 5 C ( X ) . 

Corollary 2. For a pseudo-radial T9 space, if GCH holds and 
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q;t(X)<t(X), then t(X)*d(X). 

Corollary 3. If X is a T, pseudo-radial space, q-t(X) = ae 

and f (X) &. tf+, then 

t(X) = qflr (X). 

The proof is given by the same argument of Theorem 2.10. 

Proposition 2.11. Let X be a pseudo-radial Hausdorff space, 

and let xeX, Ac X be such that pt(x,A) = ae+. If GCH holds, then 

q%(X) £ *+. 

Proof. Without any loss of generality we can assume that |AJ 

= ae+ (otherwise we denote by A the appropriate subset of A). Put 

Y = "A, SO that from the T2 axiom and GCH it follows that |Y| £ 

£ * + + + = <u, and ?e+ = pt(x,A)^t(Y)^|A|#^= ae+++ . Hence t(Y) 

is one of the following isolated cardinal numbers: ae , at- or 

-ae+++. Since Y is pseudo-radial, as a closed subspace of the pseu

do-radial space X, for Theorem 2.8, we have q^(Y) = t (Y) .g ae . 

Obviously q^ (X)5 q % (Y) . Thus q7C(X)g-at+. 

We recall (see C3J) that a space X is monolithic if for every 

A c X we have 

nw(A) 4 |A|, 

Lemma 2.12. For* every monolithic space X and for each AcX, 

nw(A) = nw(A). 

Proof. Obviously d(A)£ nw(A)^ nw(A). But, since X is mono

lithic, we also have nw(/T)§d(A). Thus d(A) = nw(A) = nw(X). 

Theorem 2.13. Let X be a pseudo-radial Hausdorff, monolith

ic space. Then 

t(X) = qsi(X) 

Proof. Let X be a pseudo-radial Hausdorff monolithic space 
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and * = q^(X). By contradiction suppose t(X) > r . Put *£ = {AcX: 

•.cl^ (A) = A=Ml. Then %* 0 in our hypothesis. Let ^ = minfnw(A): 

:A <s %\ and fix A e «€ such that nw(A) = /<* , As X is pseudo-ra

dial and M*A, there exist z€ A and Be A such that |B| is regular 

and B is topologically directed towards z . Since z#clt-(A) = A end 

zc B, Be A, we have |B| > f . As q^(X) & x , there exist a fa

mily y c Exp(B) such that | y \ g f , z e U^ and z$ P for every 

P in y . I t follows that |P|< |B| for every P e T . Prom the re

gularity of |B| and x< |B| it follows | Uy |< : |BV But, as was 

observed in Proposition 2 .4, from B being topologically directed 

towards z and the regularity of |B|, we conclude that y(z,Bu«fz».g. 

2T|B|. Hence nw(B)£|B-|, which implies nw(B) = |B|: In fact, if 

the inequality did not hold, using T2, one could produce a family 

of open sets whose intersection is z, but of cardinality less than 

|B|, which is impossible. 

Put M = U ^ and L = clr(M). From Lemma 2.12 it follows that 

nw(M) = nw(M) = nw(T) = nw(L). As nw(B) = |B|, we have 

nw(M)^|M|< | B | = nw(B)^nw(A) = /U. > 

and thus nw(L) = nw(M) -< /«*- • 

On the other hand clr(L) = cl/C(clr(M)) = cl^(M) = L; L = cl,r(M) c 

cclf(B)cclt(A) = A, and z c M c T but zf A. It follows that zcT\L, 

i.e.- T^L, hence L c *i . But then 

<tt = min-fnw(A) : A e ' i i . £ n w ( L ) - - - j a - -

A contradiction. 

Theorem 2.14. Let X be a pseudo-radial Hausdorff space such 

that |X| *-*«*. If 6CH holds, then t(X) = q^(X). 

Proof. Let X = qt^(X) and suppose tr < t(X). Then there e-

xiats a set Ac X such that c3yc(A) = A=*-T. Since X is pseudo-radi

al then there exists Be A topologically directed towards some 
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zeX\A, with |B| regular. Then |B| < X^ . Now z|clt,(B)c clt(A) = 

= A, so that pt(z,B) > tr ; pt(z,B) is, however, not greater than 

|B| and it is then an iSilated cardinal, so that from Proposition 

2.11 q \(X)2 pt(z,B). We have then obtained a contradiction f = 

= q*(,(X) > f . 

Theorem 2.15. Under GCH for a Hausdorff pseudo-radial k-spa-

ce X, we have t(X) = q\(X). 

Proof. For any compact subspace K of X (K is closed and hen

ce pseudo-radial) we have t(K) = q . i ( K ) , for Theorem 2 ,9 . Hence 

t(K)6qx(X) for any compact subspace K of X. From the definition 

of a k-space and recalling that the weak tightness and the tight

ness coincide, it then follows that t(X)^q^(X), i.e. that they 

are equal. 

3. Tightness with respect to a family of subsets. Let & be 

a family of subsets of a topological space X, and let r be a rela

tion between points and subsets of X, given in such a way that for 

any xcX and AcX it can be decided if x r A is true or not. Con

sider the following 

Definition 3.1. Given the topological space X and a family 3? 

of subsets of X, we say that the topology of the space is Fr^chet 

-generated by & ' or that X is Fr6chet-tight with respect to 3% 

if for every set AcX and point x e T there is a subset Fg ^ such 

that Fc A and xeT. 

Definition 3.2. Given the space X and a family $ , we say 

that the topology of X is gradually generated by & or that X is 

tight with respect to $ if for every non-closed set A there is 
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F € f such that F c A and 7 \ A* 0 . 

The preceding definitions can be profitably generalized as 

follows. 

Definition 3.1. X is said to be Fr6chet generated by the fa

mily & and the relation r or to be Fr6chet-tight with respect to 

$ and r, if for any Ac X and any xe A" there is F c 5^ such that 

Fc A, x £ T and x r F. 

Definition 3.2. X is gradually generated by & and r or 

tight with respect to $ and r if for any non-closed subset A the

re are F & $ and x such that Fc A, x£ F\ A and x r F. 

Given two families tf and *~l of subsets of X we denote by 

T $ <•£ the family: 

& 0 ^ --.F $ f : there exists E & <£ such that Fc E/. 

Finally if & is a family of subsets of X and r is a relation bet

ween points and subsets of X, we put respectively 

cl-- (A) = 4.x«s X:there exists F a ? such that Fc A and xeFl 

cl_» (A) = -tx * X: there exists F & *£ such that FcA.xcTand x r Fj. 
j >r 

lemma 3.1. L,et S' and *i be families of subsets of the topo

logical space X; if X is Fr6chet-tight with respect to 'J and tight 

with respect to *£ , then it is tight with respect to $ 0 *i -

Proof. Let A be a non-closed subset of X; then there is x € 

c!f\A, for some E & **t and EcA. As X is Frechet-tight with res

pect to S" , we can find F & & such that Fc E and xe F. Then F e 

effy^i, and, by definition, X is tight with respect to 3* Q *t . 

The following proposition is obviously true. 

Proposition 3.2. If X is Frichet-tight with respect to both 

families & and % then it is Fr6chet-tight with respect to *$ § % 
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and ti$-f-

Similarly to Lemma 3.1 one can prove 

Lemma 3.1.' Let r be a relation between points and subsets of 

X and let 3 and *•€ be two families of subsets of X such that X is 

Frechet-tight relative to & and r and X is tight with respect to 

% . Then X is tight with respect to J <> % and r. 

The following result should be considered as well known; at 

least it has been proved in many particular cases (see [6j,[7J or 

U9J. 

Lemma 3.3. Let r be a relation between points and subsets of » 

X, and let (P be a family of subsets of X, such that X is tight 

with respect to .P and r; put r = sup i\P\ :P €. $>} . Define A00 = 

= cl̂ p (A) for oo & t by transfinite induction: 

A0 = A; 

ft* = Ui%ft: (I <<*? = U U l £ r ( A ) : ft <.<*} , if cc is a limit ordinal; 

A*+1 = cl£r(A) = c V r(cl- r(A)) = cl,ir(*-). 

Then cl^tf**) = A*+. 

Proof. Assume the contrary and put A* = kr . Then there e-

xist Bc .P and x e A*\A* such that xeB, B c A* and x r B. 

By the construction A* = \j-t ft*: oc < t+f and A*' c A00" if oo'-iocV 

< t (we identified x with the initial ordinal number having 

the same cardinality). 

Since cf( t +) = tr+ and | B | £ tr , one can find o&¥ <c t+ such 

that Be ft** . Then x c c L r(ft**) = ft^
+1c t** = A* , which is in 

contradiction with the hypothesis xeA*^A* . 

Corollary. If X is tight with respect to P and r, then for 

any subset A of X, 

h = A . 
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Remarks. By considering particular families (P and relations 

r between points and subsets of X, special interesting cases can 

be obtained, as shown by the following examples. 

(1) If X is a sequential space, let (P be the family of coun

table subsets of X and x r B be the relation: "There is a sequence 

(x ) converging to x such that B c - t x J " . Since j-5 = sup i|B|:B e 

€ &\ , we obtain that for any subset A of X, T = ̂  , where A de

notes the (non-idempotent) sequential closure (see L7J,f19J), 

(2) Let X be a k-space, (P be the family of subsets of X of 

cardinality not greater than t(X) and r be the following relation: 

"B is a subset of a compact set K in X such that xc Kn A ". Then, 

if A = I xe X*.x c KTTA for some compact K in Xl, we have A = A , 

if t = t(X) (see C61). 

(3) Let X be a pseudo-radial space, (P be as in example (2) 

and r be the relation: "There is a .3.-sequence converging to x, 

such that Bel* and Bc*fx_,:oc -< X} " . If A denotes the chain-net 
oC 

closure, then A = A . Here again tf= t(X). 

Note that in sequential spaces the tightness is countable so 

that, in the three examples that we have examined , it is the first 

ordinal of cardinality greater than the tightness which gives an 

upper bound for the number of times the pseudo-closure has to be 

iterated in order to get the topological closure. 

Proposition 3.4. Let X, & , r and f be as in the preceding 

Lemma 3.3. Assume, in addition, that for some cardinal ^ 2 t 

the following condition is satisfied: 

if AcX ana* |A| * ju , then Icl^ p(A)| £ <u. . 

Let X be tight with respect to (P and r. Then |A| £ (tt implies 
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Proof. By transfinite induction it follows that if |A| £ ^c 

then lÂ I £ ^ for every cc £ x+. Hence \%* | # («. : Since ^ = 

= A, we have |J| & (U.. 

We recall here some definitions that are needed in the fol

lowing theorem and remarks. The bitightness bt(X) of a topological 

space X is the least cardinal number x such that if A is non-clo

sed in X there are a point xcA\A and a family P of subsets of A 

for which |P| £ r , for any P in & , | @ \ £ r and «Cx? = A{P:P€ 

6 CP 1 . The bitightness can be defined for any Hausdorff space; 

the definition was given by Arhangel'skii in Soviet Math. Dokl. 

11(1970), 597-601. The closure character of the space X, denoted 

by kc(X), is the least cardinal number x such that a set C is 

closed in X if and only if Cr>K is closed for any closed set K of 

X, with | K| * X (see [83). 

Theorem 3.5. For any topological space X we have |X| £ 

£(d(X))t(X).(kc(X))t(X). 

Proof. Put X = t(X) and A= kc(X). Let ./-{Be X: |B| £ x 1 

and % = i B c X :¥ = B and | B | £ A I . 

Define !P= # 0 t = { F « ? :there is E e t with Fc E?. 

Clearly 9 = * B c X: |B| £ *r and |B| * A? . Let A be any subset of 

X and put (A. = |A|*. A* . Then *t = <o*> r+. Let Mc X be such that 

|M| £ (it . Then cl (M) = Ut!:B s CP and Be Ml. Since |B| £ X for 

any B e <f> , we have |{B e <P :Bc Ml | £ |M|*£ jc"'* pL . Besides 

|B| £ (U. so that |cl^(M)| £ AL-^A. r <u, . Then by Proposition 3.4 

it follows that |M| £ <a since |M| 4. ̂  implies |cl^(M)| £ (u, and 

X is obviously tight with respect to the family 'J> . 

In particular, since |A| £ (U, , we also have |A| £ <a : We have 

then shown that for any subset A of X the following holds: 
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|A|* |A|t(X)- kc(X)t(X). 

Taking, in particular, for A a dense subset of X, we get the the

sis. 

The case of the real line with the usual topology shows that 

the equality can hold in Theorem 3.5. In fact, for the real line 

density, tightness and closure character are countable. 

We observe that for T? spaces the above upper bound for the 

cardinality of A is a little sharper than the one given by using 

the bitightness: | A| *i | A | b t ( X ), since in this case kc(X)*£ 2 b t ( X ). 

Theorem 3.6. For any topological space X the following con

ditions are equivalent: 

(a) kc(X)£2t(X) 

— t ( X ) 
(b) |A|^ |A| , for any subset A containing more than one point. 

Proof. ((a) implies (b).) As t(A)£t(X) and kc(A)#kc(X) by 

Theorem 3.5 we have 

|lU|A| t ( X ).kc(X) t ( X )^|A| t ( X ).(2 t ( X )' t ( X ) * |A|t(X) 

if |A|-> 1. 

((b) implies (a).) Put tf> = -CB: |B| £t(X)} . From the defini

tion of tightness if A is non-closed in X there is a closed set F 

in (P such that An F is not closed in X. By condition (b) |F| .£ 

£(t(X)) t ( X ) = 2 t ( X ) for every F in $> , and all elements of & 

are closed in X. Now the topology of X is generated, in the usual 

sense, by (P . So kc(X)£2 t ( X ) must hold in X. 

4. Some open problems on pseudo-radial spaces. The follow

ing is a list of1some of the more interesting problems and questi

ons which were raised during this investigation and are still un

solved, as far as we know. 
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x) 

(1) ' Can "real" (i.e. without additional assumptions on ZFC 

set theory) examples be obtained of a T« (or T,, T. or T2 compact) 

pseudo-radial space with countable tightness which is not sequen

tial? 

x) 

(2) Find a T, pseudo-radial space such that the quasi-cha

racter is strictly less than the tightness. 

(3) Find necessary or sufficient (or both) conditions for a 

space Y to be a subspace of a pseudo-radial space X. 
(4) In particular: is N uipl a pseudo-radial space for any 

p e (5N\ N ? 
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