Commentationes Mathematicae Universitatis Caroline

Věra Trnková
 Simultaneous representations in discrete structures

Commentationes Mathematicae Universitatis Carolinae, Vol. 27 (1986), No. 4, 633--649

Persistent URL: http://dml.cz/dmlcz/106482

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

27,4 (1986)

SIMULTANEOUS REPRESENTATIONS IN DISCRETE STRUCTURES
 Vèra TRNKOVA

Abstract: For every sequence of monoids $M_{0} \subseteq M_{1} \subseteq M_{2} \subseteq \ldots$
there exists a directed graph (X, R) such that, for every $i=0,1$, $2, \ldots, M_{i}$ is isomorphic to the endomorphism monoid End $t^{i}(X, R)$, . where $t^{0}(X, R)=(X, R), t(X, R)=(X, R \cup R c R), t^{i+1}(X, R)=t\left(t^{i}(X, R)\right)$. A more general setting of simultaneous representation is introduced and stronger and more general results are presented.

Key words: Directed graph, representation of monoids, full embedतings of categories.

Classification: 18A22, 18B10, 20M30, 20M50, $05 C 20$.
I. Introduction. Every group is isomorphic to the group of all automorphisms of a graph ([F,Si), every monoid (= semigroup with a unity) is isomorphic to the monoid of all endomorphisms of a graph ([HP, PH]). The next generalization leads to the investigation of full embeddings of small (or concrete) categories into the category of graphs. Let us recall that a functor

$$
\Phi: \mathcal{K} \rightarrow \mathscr{H}
$$

of a category \mathcal{K} into a category \mathcal{H} is called a full embedding iff it is faithful (i.e. one-to-one on each set of morphisms with the same domain and codomain) and full (i.e. for every $a, b \in$ G obj \mathcal{K}, Φ maps the set $\mathscr{K}(a, b)$ of all \mathscr{K}-morphisms with the domain a and codomain b onto the set $\mathscr{H}(\Phi(a), \Phi(b))$. The results
 problems by putting \mathcal{X} to be a one-object category. The full embeddings of categories and related field of problems are investigated in the monograph [PT].

In the present paper, we investigate how some "standard constructions" influence the selecting of morphisms. For example, let R be a binary relation on a set X, \widetilde{R} its transitive hull.

Then the monoid M of all endomorphisms of the directed graph (X, R) is a submonoid of the monoid \tilde{M} of all endomorphisms of (X, \widetilde{R}). Are there some other relations between M and \widetilde{M} ? Dur answer is no: for arbitrary two monoids M, \tilde{M} such that $M \subseteq \tilde{M}$ there exists (X, R) with $M \simeq \operatorname{End}(X, R)$ and $\widetilde{M} \simeq \operatorname{End}(X, \widetilde{R})$.

We adopt the categorical language and categorical description of this idea. Let us formulate the main definition of the simultaneous representation. Denote by \mathbb{C} at the category of all small categories and all functors. Let $\mathscr{C}: D \rightarrow \mathbb{C}$ at be a diagram (a functor), let D be a diagram over the same scheme D such that, for every $\sigma \in$ obj $D, D(\sigma)$ is also a category (but not necessarily small) and, for each morphism $m \in D\left(\sigma, \sigma^{\prime}\right), \mathscr{D}(m)$ is a functor of the category $D(\sigma)$ into the category $D\left(\sigma^{\prime}\right)$. A simultaneous representation of the diagram \mathscr{C} in the diagram \mathscr{D} is a natural transformation $\Phi=\left\{\Phi_{\sigma} \mid \sigma \in\right.$ obj $\left.D\right\}$ such that each Φ_{σ} is a full embedding of the category $\mathscr{C}(\sigma)$ into the category $D(\sigma)$.

If you admit "the category of all categories", the formulation of this general definition could be simplified. However, in the investigated problems, the diagram \mathscr{D} is given and its cheme is usually rather small. It is composed from some current categories (usually not small) and some current functors (describing some natural construction) and we ask which diagrams ℓ in \mathbb{C} at (over the same scheme as the given ∂) have simultaneous representations in \mathcal{D}. In the above example, \mathscr{D} is the diagram

$$
\text { Graph } \xrightarrow{h} \text { Graph, }
$$

where Graph is the category of all directed graphs (X, R) and all their compatible maps (see [PT]), and h is the functor which sends each (X, R) to its transitive hull (X, \widetilde{R}) and is identical on morphisms (clearly, h is really a functor). The investigated question: for which small categories k_{1}, k_{2} and functors $k: k_{1} \rightarrow k_{2}$ does exist a simultaneous representation in \mathscr{D}, i.e. there exist full embeddings $\Phi_{1}: k_{1} \rightarrow$ Graph, $\Phi_{2}: k_{2} \rightarrow$ Graph such that

$$
h \circ \Phi_{1}=\Phi_{2} \circ k ?
$$

Since h is a faithful functor and ${ }^{\prime} \Phi_{1}, \Phi_{2}$ are required to be faithful, K must be also faithful, obviously. Is this condition
sufficient? The positive answer is contained in the Theorem 1 of the present paper. This gives not only the above result about the monoids $M \subseteq \tilde{M}$ (if k_{1} and k_{2} are both chosen to be one-object categories) but we obtain from it e.g. the following: there exists an arbitrarily large rigid set \mathcal{R} of binary relations on the same set X (rigid in the sense that if there exists a compatible map $f:(X, R) \longrightarrow\left(X, R^{\prime}\right)$ for some $R, R^{\prime} \in \mathcal{R}$, then necessarily $R=R^{\prime}$ and f is the identity) such that the transitive hulls of all $R \in \mathcal{R}$ coincide and the unique obtained (X, \widetilde{R}) has its endomorphism monoid isomorphic to a prescribed monoid M. (This is obtained by the choice k_{2} to be a one-object category with the morphism part formed by M and k_{1} to be a discrete category, i.e. it has only unit morphisms, the functor K sends them all to the unique unit . morphism of k_{2}.)

The main results of the present paper are concentrated in the last part III. We investigate there not only the transitive hull functor h, but also single steps in its construction sending (X, R) to ($X, R \cup R \circ R$) (this leads to the result mentioned in the Abstract), the functor s, sending (X, R) to ($X, R \cup R^{-1}$) (similar problems are investigated in $[N]$ and $[H N]$, and also the category Bi Graph of all bigraphs (X, R_{1}, R_{2}) (both $R_{1}, R_{2} \subseteq X \times X$) simultaneously with the forgetful functors

sending $\left(X, R_{1}, R_{2}\right)$ to $\left(X, R_{1}\right)$ and to $\left(X, R_{2}\right)$. The part II forms a technical basis for the constructions of simultaneous representations. The Lemma proved there is used not only in the part III of the present paper, but it is useful also in the construction of simultaneous representations in continuous structures (which will appear elsewhere).

Finally, let us mention that the definition of simultaneous representations can be further generalized - the categories $\mathscr{C}(\sigma)$ also need not be small. This further generalization is used in Part III of the present paper.

II. Technical basis of simultaneous representations

II.l. Let us recall that \mathbb{C} at denotes the category of all small categories and all functors. A commutative square in \mathbb{C} at

is called a subpullback if the factorizing morphism $k: k_{0} \longrightarrow h$
(where

is a full embedding.
II.2. Let us denote by \mathbb{C} the category of all directed graphs (X, R) (i.e. X is an arbitrary set, $R \in X \times X$) such that
(i) (X, R) has no loops (i.e. never $(x, x) \in R$)
(ii) (X, R) is connected (i.e. for all $x, y \in X$ [not necessarily distinct]
there exist $x_{0}=x, x_{1}, \ldots, x_{n}=y$ in X such that, for every $i=1, \ldots, n$,

$$
\left.\left(x_{i-1}, x_{i}\right) \in R \cup R^{-1}\right)
$$

and all their compatible maps (i.e. $f:(X, R) \longrightarrow\left(X^{\prime}, R^{\prime}\right)$ is a morphism of \mathbb{W}_{w} iff $\left.(x, y) \in R \Longrightarrow(f(x), f(x)) \in R^{\prime}\right)$. By [PT, 8.5 and 8.6 on p. 53 and Theorem on p.104] every small category k can be fully embedded into (6 .

II, 3. Let $\mathrm{D}=(\mathrm{D}, 屯)$ be a poset (=partially ordered set). We consider it also a a thin category, i.e. if $d_{1} \leqslant d_{2}$, then $D\left(d_{1}, d_{2}\right)$ contains precisely one morphism, let us denote it by $\binom{d_{2}}{d_{1}}$; if $d_{1} \neq d_{2}$, then $D\left(d_{1}, d_{2}\right)=\varnothing$.

For every poset (D, \leqslant) with a last element t and arbitrary $d_{0} \in D$, let us denote by $\mathbb{G}_{D, d_{0}}$ the following category: the objects are all pairs ($X,\left\{R_{d} \mid d \in D, d \geqslant d_{0}\right\}$) such that
a) $\left(X, R_{t}\right)$ is an object of \mathbb{G};
b) if $d_{1} \leqslant d_{2}$, then $R_{d_{1}} \subseteq R_{d_{2}}$;
morphisms `are all
$f:\left(X,\left\{R_{d} \mid d \in D, d \geq d_{0}\right\}\right) \longrightarrow\left(X^{\prime},\left\{R_{d}^{\prime} \mid d \in D, d \geq d_{0}\right\}\right)$
which are $R_{d} R_{d}^{\prime}$-compatible for all $d \in D, d \geq d_{o}$.
For every ($0, \leqslant$) with a last element t, the diagram
${ }^{2} D$
is defined in a natural way as follows:
for every $d \in D, \quad \mathscr{f _ { D }}(d)=\mathbb{G}_{D, d}$ (hence $\mathscr{f}_{D}(t)=\mathbb{G}$);
if $d_{1} \leqslant d_{2}$, then $\operatorname{gy}_{0}\left(d_{d}\right): \sigma_{0, d_{1}} \longrightarrow \sigma_{0, d_{2}}$ is the natural
forgetful functor', i:e. it sends any ($X,\left\{R_{d} \mid d \geq d_{1}\right\}$) to
($X,\left\{R_{d} \mid d \geq d_{2}\right\}$) and every morphism f to f again. Let us deno- . te $y_{D}\left(d_{d}\right)$ by $\sum d_{d_{1}}$.
II.4. Lemma. Let $D=(D, \leqslant)$ be a poset with a last element t. Let $\mathscr{C}: D \longrightarrow$ Cat be a diagram such that, for every $d_{1}, d_{2} \in D, d_{1} \leqslant$ $\leqslant d_{2}$, the functor $\mathscr{(}\binom{d_{2}}{d_{1}}$ is faithful. Then \mathscr{C} has a simultaneous representation in \mathscr{Y}_{D}.

Moreover, if $d_{0}=d_{1} \wedge d_{2}$ in D and the square

is a subpullback in \mathbb{C} at, then every ($X,\left\{R_{d} \mid d \in D, d \geq d_{o}{ }^{2}\right.$) representing an object of $\varphi\left(d_{0}\right)$ (i.e. being an image of an object of $\varphi\left(d_{0}\right)$ in the component $\Phi_{d_{0}}: \varphi\left(d_{0}\right) \longrightarrow \mathscr{Y}_{D}\left(d_{0}\right)$ of the constructed simultaneous representation $\Phi=\left\{\Phi_{d} \mid d \in D\right\}$) fulfils

$$
R_{d_{0}}=R_{d_{1}} \cap R_{d_{2}}
$$

Remark. Let $\Phi: \varphi \longrightarrow \mathscr{y}_{D}$ be a simultaneous representation of a diagram $\mathscr{C}: D \longrightarrow$ Cat . Since all the forgetful functors $\varphi_{D}\left(\begin{array}{c}d_{2} \\ d_{1}\end{array}\right.$ (for all $\left.d_{1} \leqslant d_{2}\right)$ are faithful, and $\Phi_{d_{1}}, \Phi_{d_{2}}$ are also
faithful, the equation

$$
\Phi_{d_{2}} \circ \varphi\binom{d_{2}}{d_{1}}=\sum_{d_{1}}^{d_{2}} \cdot \Phi_{d_{1}}
$$

implies that $\varphi\binom{d_{2}}{d_{1}}$ must be faithful as well. Hence the lemma gives a necessary and sufficient condition for a representability of $\varphi: D \longrightarrow \mathbb{C}$ at in \mathscr{y}_{D}.

Proof of the lemma

II.5. Let k be a small category, U be a faithful functor of k into the category Set of all sets and all maps. Then there exists a full embedding

$$
\Phi: k \rightarrow \mathbb{G}
$$

such that
for every $a \in$ obj $k, \Phi(a)=(X, R)$ contains $U(a)$ (i.e. $U(a) \subseteq X)$
for every $m \in k\left(a, a^{\prime}\right), \Phi(m)$ maps $U(a)$ into $U\left(a^{\prime}\right)$ as $U(m)$.
This follows from 7.3 on page $52,1.5$ on page 59 and Theorem in 1.11 on page 104 of $[P T]$. Following [PT], we say that Φ is an extension of U.
II.6. Let a poset $D=(D, \leqslant)$ with a last element t be given, let $\varphi: D \rightarrow \mathbb{C}$ at be a diagram such that the functors $\mathscr{C}\binom{d_{2}}{d_{1}}$ are faithful for all $d_{1} \leqslant d_{2}$. Let

$$
M: k_{t} \longrightarrow S e t
$$

be the Cayley-Mac Lane representation of the category $k_{t}=\mathscr{L}(t)$ (i.e. $M(a)=\bigcup_{b \in \mathcal{b}_{j} k_{t}} k_{t}(b, a), M(m)$ sends every $p \in k(b, a)$ to $m \circ p$). Let $\Psi: k_{t} \rightarrow \mathbb{G}$ be a full embedding, which is an extension of M. We may suppose that no $\Psi(a)$, $a \varepsilon$ obj k_{t}, contains a cycle (see 3.5 on p. 108 of [PT]).

Denote $\Psi(a)=\left(\tilde{X}_{a}, \tilde{R}_{a}\right)$. Thus $M(a) \subseteq \tilde{X}_{a}$.
II.7. We may suppose that for every pair d_{1}, d_{2} of distinct elements of D, the sets obj $\varphi\left(d_{1}\right)$ and obj $\varphi\left(d_{2}\right)$ are disjoint. Put
$\Gamma=d \in \bigcup_{D}$ obj $\varphi(d)$.
Let $\left\{\left(Y_{\gamma}, T_{\gamma}\right) \mid \gamma^{\nu} \in \Gamma\right\}$ be a collection of objects of \mathbb{G}, rigid
in the following sense: if there is a compatible map $f:\left(Y_{\gamma}, T_{\gamma}\right) \cdots>$ $\rightarrow\left(\gamma_{\gamma^{\prime}}, T_{\gamma^{\prime}}\right)$, then necessarily $\gamma=\gamma^{\prime}$ and f is the identity (such a collection is the result of a full embedding of a discrete category h with obj $h=\Gamma$ into σ_{r}). Moreover, we may suppose that no (Y_{γ}, T_{γ}) contains a cycle (see 3.5 on p .108 of [PT) again). For every $\gamma \in \Gamma$, we form a graph $H_{\gamma}=\left(A_{\gamma}, S_{\gamma}\right)$ as follows:

$$
\begin{aligned}
A_{\gamma} & =Y_{\gamma} \cup\{y, p, q\} \cup\{(p, i) \mid i=1, \ldots, 7\} \cup\{(q, i) \mid i=1, \ldots, 9\}, \\
S_{\gamma} & =T_{\gamma} \cup\{(p, q)\} \cup\left\{(q, \bar{y}),(\bar{y}, y) \mid \bar{y} \in Y_{\gamma}\right\} \cup \\
& \cup\{((p, i) .(p, i+1)) \mid i=1, \ldots, 5\} \cup\{(p,(p, 1))\} \cup \\
& \cup\{(p,(p, 7)),((p, 7),(p, 6)),((p, 6), p)\} \cup \\
& \cup\{((q, i),(q, i+1)) \mid i=1, \ldots, 7\} \cup\{(q,(q, 1))\} \cup \\
& \cup\{(q,(q, 9)),((q, 9),(q, 8)),((q, B), q)\} .
\end{aligned}
$$

(Informally: denote by $G_{i, j}$ an i-cycle and j-cycle glued together along one arrow, denote its end by $\ell_{i, j}$; we form H_{-r} from $\left(Y_{\gamma}, T_{\gamma}\right)$ by the adding of new three vertices y, p, q and joining p with q, q with every vertex in $Y_{\mathcal{D}}$ and every vertex in Y_{γ} with y; finally we glue a copy of $G_{3,7}$ on p identifying p with $l_{3,7}$ and a copy of $G_{3,9}$ on q identifying q with $l_{3,9}$.)
Finally, denote by (B, Q) the graph $G_{3,5}$ (with $\ell=\ell_{3,5}$), i.e.
$B=\{\ell,(\ell, i) \mid i=1, \ldots, 5\}$
$Q=\{(\ell,(\ell, 1))\} \cup\{((\ell, i),(\ell, i+1)) \mid i=1,2,3\} \cup$

$$
\cup\{(\ell,(\ell, 5)),((\ell, 5),(\ell, 4)),((\ell, 4), \ell)\} .
$$

II. 8 . Now, we define $\Phi_{t}: k_{t} \longrightarrow y_{D}(t)=\mathbb{G}_{0}$. For every $a \in \operatorname{obj} k_{t}$, put $\Phi_{t}(a)=\left(X_{a}, \bar{R}_{a}\right)$, where
$x_{a}=\tilde{x}_{a} \cup \tilde{x}_{a} \times(B \backslash\{\ell\}) \cup M(a) \times \bigcup_{\gamma \in \Gamma}\{\gamma\} \times\left(A_{\gamma} \backslash\{y\}\right)$
$\bar{R}_{a}=\widetilde{R}_{a} \cup T_{a}^{1} \cup T_{a}^{2}$, with
$\left.T_{a}^{1}=f\left(\left(x, r_{1}\right),\left(x, r_{2}\right)\right) \mid x \in \tilde{X}_{a}, \quad\left(r_{1}, r_{2}\right) \in Q, r_{1} \neq \ell \neq r_{2}\right\} u$
$\cup\left\{\left(\left(x, r_{1}\right), x\right) \mid x \in \tilde{X}_{a},\left(r_{1}, \ell\right) \in Q\right\} \cup\left\{\left(x,\left(x, r_{2}\right)\right) \mid x \in \tilde{X}_{a},\left(\ell, r_{2}\right) \in Q\right\}$,
$T_{a}^{2}=\left\{\left(\left(x,\left(\gamma, r_{1}\right)\right),\left(x,\left(\gamma, r_{2}\right)\right)\right) \mid x \in M(a), \gamma \in \Gamma,\left(r_{1}, r_{2}\right) \in S_{\gamma}, r_{1} \neq y \neq r_{2}\right\} u$
$u\left\{\left(\left(x,\left(\gamma, r_{1}\right)\right), x\right) \mid x \in M(a), \gamma \in \Gamma,\left(r_{1}, y\right) \in S_{\gamma \gamma}\right\}$.
(Informally: we start from $\Psi(a)=\left(\widetilde{X}_{a}, \widetilde{R}_{a}\right)$ and glue a copy of $G_{3,5}$ on each element x of \widetilde{x}_{a} by identifying x with the vertex l of this copy [this is described by $\left.\Gamma_{a}^{1}\right]$; then we glue a copy of each H_{γ} on each element x of $M(a)$ by identifying x with the vertex y
of this copy [this is described by $\mathrm{T}_{\mathrm{a}}^{2} \mathrm{~J}$.)
The definition of $\Phi_{t}(m): \Phi_{t}(a) \longrightarrow \Phi_{t}\left(a^{\prime}\right)$, for $m \in k_{t}\left(a, a^{\prime}\right)$, is obvious: it extends $\Psi(\mathrm{m})$ and it maps the copy of $G_{3}, 5$ (or H_{γ}) glued on x onto the copy' of $G_{3,5}$ (or H_{γ}) glued on $\bar{x}=[\Psi(\mathrm{m})](x)$ such that it sends (x, r) (or (x, γ, r)) to (\bar{x}, r) (or (\bar{x}, γ, r), respectively).
Clearly, Φ_{t} is a faithful functor of k_{t} into \mathbb{G}. We show that it is full: a compatible map $f:\left(X_{a}, \bar{R}_{a}\right) \longrightarrow\left(X_{a^{\prime}}, \bar{R}_{a^{\prime}}\right)$ has to map a copy of $G_{3,5}$, onto a copy of $G_{3,5}$ again; hence it maps \tilde{x}_{a} into \widetilde{x}_{a}, because $\Psi\left(a^{\prime}\right)$ and $H_{\gamma}, \gamma \in \Gamma$, contain no $_{3,5}$; since Ψ is full, there exists $m \in K_{t}\left(a, a^{\prime}\right)$ such that $\Psi(m): \hat{X}_{a} \rightarrow \widetilde{x}_{a^{\prime}}$ is a domain-range-restriction of f; since f sends every copy of $G_{3}, 7$ and $G_{3,9}$ on $G_{3,7}$ and $G_{3,9}$ again and since the collection $\left\{H_{\gamma} \mid \gamma \in \Gamma\right\}$ is rigid, necessarily f is equal to $\Phi_{t}(m)$.
II.9. Let $d_{1} \in D, d_{1}<t$, be given. We construct $\Phi_{d_{1}}$:
$: \varphi\left(d_{1}\right) \rightarrow \mathscr{C}_{D, d_{1}}$. For every $a \in \operatorname{obj} \varphi\left(d_{1}\right)$, denote $a(t)=\left[\varphi\binom{t}{d_{1}}\right](a)$. For every $\gamma \in \Gamma, x \in M(a(t))$, denote $v_{x, \gamma}=((x, \gamma, p),(x, \gamma, q)) \varepsilon$ $\in \bar{R}_{a(t)}$. We put

$$
\Phi_{d_{1}}(a)=\left(X,\left\{R_{d} \mid d \in D, d \geq d_{1}\right\}\right),
$$

where $\left(X, R_{t}\right)=\Phi_{t}(a(t))$ (i.e. $\left(X_{a}(t), \bar{R}_{a}(t)\right.$) in the notation of II.B) and, for every $d_{2} \in D, d_{1} \leqslant d_{2}<t$,

$$
\begin{aligned}
R_{d_{2}}= & \left\{v_{x, \gamma} \mid \gamma \in \text { obj } \varphi(d) \text { with } d \leq d_{2} \text { and } x=\left[\varphi\left(d_{2}^{t}\right)\right](\alpha)\right. \text { for } \\
& \text { some morphism } \left.\propto \in\left(\varphi\left(d_{2}\right)\right)\left(\varphi\left(d_{2}\right)(\gamma), \varphi\binom{d_{2}}{d_{1}}(a)\right)\right\} .
\end{aligned}
$$

(In the definition of $R_{d_{2}}$, we use that $M: k_{t} \longrightarrow$ Set is the CayleyMac Lane representation, hence the morphism \propto in the category $\varphi\left(d_{2}\right)$ [from the object $\varphi\left({ }_{d}{ }^{d_{2}}\right)(\gamma)$ into the object $\left.\varphi\left({ }_{d_{1}}^{d_{2}}\right)(a)\right]$ is
 makes sense.) ${ }^{2}$
II.10. Clearly.

$$
\sum_{d_{1}}^{d_{2}}\left(\Phi_{d_{1}}(a)\right)=\Phi_{d_{2}}\left(\varphi\left(d_{d_{1}}^{d_{2}}\right)(a)\right) \text { for all } d_{1} \leqslant d_{2} \text { and } a \in \operatorname{obj} \varphi\left(d_{1}\right),
$$

because the definitions of the relations $R_{d}, d \geq d_{2}$; are the same
for $\Phi_{d_{1}}(a)$ and for $\Phi_{d_{2}}\left(\varphi\left({ }_{d_{2}}^{d_{2}}\right)(a)\right)$. Define $\Phi_{\Phi_{1}}(m)$ such that $\Sigma_{d_{1}}^{d_{2}} \circ \Phi_{d_{1}}=\Phi_{d_{2}} \circ \varphi\left(d_{d_{1}}^{d_{2}}\right)$ for all $d_{1} \leqslant d_{2} \leqslant t$.
II.11. We prove that $\Phi_{d_{1}}: \varphi\left(d_{1}\right) \rightarrow \mathbb{G}_{D, d_{1}}$ is really a functor: For every a \in obj $\mathscr{(}\left(d_{1}\right), \Phi_{d_{1}}(a)$ is really an object of $\mathbb{G}_{D, d_{1}}$. Let m be a morphism in $\mathscr{\mathscr { C }}\left(d_{1}\right)$ from an object a into a^{\prime}. Denote $\Phi_{d_{1}}(a)=\left(x,\left\{R_{d} \mid d \geq d_{1}\right\}\right), \quad \Phi_{d_{1}}\left(a^{\prime}\right)=\left(X^{\prime},\left\{R_{d}^{\prime} \mid d \geq d_{1}\right\}\right)$. We have to verify that the map $f=\Phi_{d_{1}}^{\prime}(m)$ is $R_{d} R_{d}^{\prime}$-compatible, $d \geq d_{1}$. Since f maps elements of X into $X^{\prime N}$ as $\Phi_{t}\left(\mathscr{C}\binom{t}{d_{1}}(m)\right)$; it is $R_{t} R_{t}^{\prime}$-compatible. Let $d_{2} \in D, d_{1} \leqslant d_{2}<t$ be given. We have to show that f is $R_{d_{2}} R_{d_{2}}^{\prime}$-compatible. Denote $m_{t}=\left[\mathscr{C}\binom{t}{d_{1}}\right](m)$. Let $v_{x, \gamma}$ be in $R_{d_{2}}$ (i.e. $\gamma \in$ obj $\varphi(d)$ with $d \leq d_{2}$ and $x=\varphi\binom{t}{d_{2}}(\alpha)$ for some $\left.\alpha \in \varphi\left(d_{2}\right)\left(\varphi\left({ }_{d}^{d}\right)(\gamma), \varphi\left({ }_{d_{2}}^{d_{2}}\right)(a)\right)\right)$. Since M is the Cayley-Mac Lane representation of $k_{t}, M\left(m_{t}\right)$ sends x to $x^{\prime}=m_{t} \circ x \in \Phi_{t}\left(\varphi\binom{t}{d_{1}}\left(a^{\prime}\right)\right)$, hence $\Phi_{t}\left(m_{t}\right)$ sends the arrow $v_{x, \gamma^{\prime}}$ on the arrow $v_{x^{\prime}}, \gamma^{\prime}$. But $x^{\prime}=m_{t} \bullet x=\left(\varphi\binom{t}{d_{1}}(m)\right) \circ\left(\varphi\binom{t}{d_{2}}(\propto)\right)=\left[\varphi\binom{t}{d_{2}}\right]\left(\varphi\binom{d_{2}}{d_{1}}(m) \circ \propto\right)$. Thus, by the definition of $R_{d_{2}}^{\prime}, v_{x}, \gamma, \gamma$ in $R_{d_{2}}^{\prime}$ so that f is $R_{d_{2}} R_{d_{2}}^{\prime}$-compatible.
II.12. We prove that $\Phi_{d_{1}}$ with $d_{1}<t$ is full: let $a, a^{\prime} \in$ ϵ obj $\varphi\left(d_{1}\right)$, denote $\Phi_{d_{1}}(a)=\left(X,\left\{R_{d} \mid d \geqslant d_{1}\right\}\right), \Phi_{d_{1}}\left(a^{\prime}\right)=$ $=\left(X^{\prime},\left\{R_{d}^{\prime} \mid d \geq d_{1}\right\}\right)$; let $f: \Phi_{d_{1}}(a) \longrightarrow \Phi_{d_{1}}\left(a^{\circ}\right)$ be a morphism in $\mathscr{y}_{\dot{D}}\left(d_{1}\right)$, i.e. $R_{d} R_{d}^{\prime}$-compatible for all $d \geq d_{1}$. Then $\sum_{d_{1}}^{t}(f)$: $: \sum_{d_{1}}^{t}\left(\Phi_{d_{1}}(a)\right) \rightarrow \sum_{d_{1}}^{t}\left(\Phi_{d_{1}}\left(a^{\prime}\right)\right)$ is a morphism in $\mathscr{V}_{0}(t)$. Since $\sum_{d_{1}}^{t} \circ \Phi_{d_{1}}=\Phi_{t} \circ \varphi\binom{t}{d_{1}}$ and Φ_{t} is full; by II.8, there exists a (unique) morphism $\beta \in \mathscr{C}(t)\left(\mathscr{L}\binom{t}{d_{1}}(a), \mathscr{C}\binom{t}{d_{1}}\left(a^{\prime}\right)\right)$ such that $\Phi_{t}(\beta)=\sum_{d_{1}}^{t}(f)$. The arrow $v_{x, a}$ with $x=\mathscr{C}\binom{t}{d_{1}}\left(1_{a}\right)=1_{a}(t)$ is in $R_{d_{1}}$, hence its f-image v^{\prime} is in $R_{d_{1}}^{\prime}$. But f sends it to the same
arrow as $\sum_{d_{1}}^{t}(f)$, i.e. $v^{\prime}=v_{x^{\prime}}$, a with $x^{\prime}=\left[\sum_{d_{1}}^{t}(f)\right]\left(1_{a(t)}\right)=$ $=\left[\Phi_{t}(\beta)\right]\left(1_{a}(t)\right)=[M(\beta)]\left(1_{a(t)}\right)=\beta$. Since $v^{\prime}=v_{\beta, a}$ is in $R_{d_{1}}^{\prime}$, there exists (by the definition of $\left.R_{d_{1}}^{\prime}\right) ~ \alpha \in\left(\varphi\left(d_{1}\right)\left(a, a^{\prime}\right)\right.$ such that $\left(\varphi\binom{t}{d_{1}}\right)(\alpha)=\beta$. Then $\mathrm{f}=\Phi_{\mathrm{d}_{1}}(\alpha)$ because the functors $\Phi_{d_{1}}, \Sigma_{d_{1}}^{t}, \varphi\binom{t}{d_{1}}, \Phi_{t}$ are faithful and $\Sigma_{d_{1}}^{t} \circ \Phi_{d_{1}}=$ $=\Phi_{t} \cdot \varphi\binom{t}{d_{1}}$.
II.13. Finally, let $d_{0}=d_{1} \wedge d_{2}$ in D and

be a subpullback in Cat ; a simple computation gives $R_{d_{0}}=R_{d_{1}} \cap R_{d_{2}}$ for every $a \in \operatorname{obj} \varphi\left(d_{0}\right), \Phi_{d_{0}}(a)=\left(x,\left\{R_{d} \mid d \geq d_{0}\right\}\right)$. In fact, if $v_{x, \gamma} \in$ $\in R_{d_{1}} \cap R_{d_{2}}$, then $\gamma \in \operatorname{obj}^{\varphi} \varphi(d)$ for some $d \leq d_{i}, i=1,2$, hence $d \leq d_{0}$; and $x=\varphi\left(d_{d_{i}}^{t}\right)\left(\alpha_{i}\right)$ for some morphism $\alpha_{i} \in \varphi\left(d_{i}\right)\left(\varphi\left({ }_{d} d_{i}\right)(\gamma), \varphi\left({ }_{d_{i}}^{d_{i}}\right)(a)\right)$, $i=1,2$: Since $\varphi\binom{t}{d_{1}}\left(\alpha_{1}\right)=x=\varphi\binom{t}{d_{2}}\left(\alpha_{2}\right)$ and the square is a subpullback, there exists $\alpha_{0} \in \varphi\left(d_{0}\right)\left(\dot{\varphi}\left({ }_{d}{ }_{d}\right)(\gamma), a\right)$ such that $\varphi\binom{d_{i}}{d_{0}}\left(\alpha_{0}\right)=\alpha_{i}, i=1,2$, so that $v_{x, \gamma} \in R_{d_{0}}$.
II.14. Remarks. a) We constructed the simultaneous representation Φ such that, for every $d_{0} \in D$ and a ε obj $\varphi\left(d_{0}\right)$, no R_{d} in $\Phi_{d_{0}}(a)=\left(X,\left\{R_{d} \mid d \geq d_{0}\right\}\right)$ contains a j-cycle with $j>9$ and (x, R_{t}) admits no morphism into any $G_{3, j}$ with $j>9$. This will be used in III.
b) Let us denote by \mathbb{G}_{f} (or $\left.\left(\mathbb{G}_{D, d}\right)_{f}\right)$ the full subcategory of \mathbb{G} (or $\mathbb{G}_{D, d}$) generated by all the pairs (X, R) (or ($\left.X,\left\{R_{d} \mid d \ldots\right\}\right)$ with X finite. If k is a finite category, $M(a)$ is finite for all áobjk. By [PT, 7.4 on p. 52 and 5.1-3 on p.72], the Cayley-Mac Lane representation $M: k \longrightarrow$ Set can be extended
to a full embedding $\Psi: k \longrightarrow \mathbb{W}_{\mathrm{f}}$. Inspecting the proof of the Lemma, we see that
if D is finite and each $\mathcal{Z}(d), d \in D$, is finite then there is a simultaneous representation $\Phi: \Psi \longrightarrow \Psi_{D}$ such that, for every $d \in D$ and every $a \in \operatorname{obj} \mathcal{T}(d), \Phi_{d}(a)$ is in $\left(\mathbb{G}_{D, d}\right)_{f}$.
III. The Main Theorems. Let $R \subseteq X \times X$. Put $t(X, R)=(X, R \cup R \bullet R)$ and

$$
t^{0}(X, R)=(X, R), \quad t^{i+1}(X, R)=t\left(t^{i}(X, R)\right)=\left(X, R_{i+1}\right) .
$$

By an infinite iteration we obtain the transitive hull of R

$$
h(x, R)=\left(x, \sum_{i=1}^{\infty} R_{i}\right) .
$$

Let us denote by $h, t: G r a p h \longrightarrow G r a p h ~ t h e ~ c o r r e s p o n d i n g ~ f u n c t o r s, ~$
i.e. $t(X, R)=(X, R \cup R \circ R), h(X, R)=(X, \underbrace{\infty}_{i=1} R_{i})$ on objects
$t(f)=h(f)=f$ on morphisms.
These functors naturally lead to the following commutative diagram $($ over the scheme $\omega+1=\{0,1,2, \ldots, \omega\}$:

Theorem 1. A commutative diagram \mathcal{C} over $\omega+1$ in \mathbb{C} at

has a simultaneous representation in D iff all the functors K_{n}^{m} are faithful.

Proof. 1) Since t, h and every $\Phi_{n}: k_{n} \longrightarrow$ Graph in a simultaneous representation $\Phi=\left\{\Phi_{n} \mid n \in \omega+1\right\}: \mathscr{C} \longrightarrow \not D$ are faithful, every K_{n}^{m} must be faithful.
2) To 'prove the opposite implication, let us suppose that all the K_{n}^{m} 's are faithful. Then, by the Lemma in II, there is a simultaneous representation $\varphi \longrightarrow \mathcal{L}_{\omega+1}$, hence it is sufficient to find a simultaneous representation $\Psi=\left\{\Psi_{n} \mid n \in \omega+1\right\}: \mathcal{Y}_{\omega+1} \rightarrow D$. Let $G_{i, j}, \ell_{i, j}$, be as in II.7. For an object ($X,\left\{, R_{n} \mid n \in \omega+1\right\}$) of
$Y_{ब+1}(0)$ (by II.14, we may suppose that no R_{n} contains a j-clclew with $j>9$ and $\left(X, R_{\omega}\right)$ admits no, morphism into any $G_{3, j}$ with jン9) put

$$
\left(\widetilde{x}, \tilde{R}_{\omega}\right)=\left(x, R_{\omega}\right) \|_{i} \stackrel{1}{=} \mathrm{l}_{0}^{\infty} G_{3,10+i},
$$

where \Perp denotes the coproduct in Graph and denote the vertex $l_{3,10+\mathrm{i}}$ by l_{i}.
3) In the graph ($\widetilde{X}, \widetilde{R}_{\omega}$), we replace each arrow $\underset{\text { ! }}{ }$! by a copy of the undirected graph (Y, S) below.
(*) $(Y, S):$

(For the exact description of (Y, S), see $p .68$ in $[P T]$. The replacing of any arrow in a directed graph by a copy of (Y, S) [described with all details in IV. 2 of [PT]] leads to a full embedding of Graph into the category of all undirected graphs, see 3.1 on p. 107 in [PT].) Finally, we replace each edge ._. in the obtrained undirected graph by a copy of the directed graph ($\overline{\mathrm{Y}}, \overline{\mathrm{s}}$) below.

$$
(\bar{\gamma}, \bar{s}): \quad \stackrel{c}{\longleftarrow} \stackrel{e}{e}^{d}
$$

We obtain a directed graph again, say ($\bar{X}, \bar{R} \omega$). This graph contains no consecutive arrows, hence $\overline{\mathrm{R}}_{\omega}$ is transitive. We may suppose that during the replacing procedures we added some new vertices not changing the old ones so that $\tilde{X} \subseteq \bar{X}$. For every arrow $r=(a, b)$ in R_{ω} denote by E_{r} the set of the "middle vertices $e "$ in all the copies of (\bar{Y}, \bar{S}) replacing the edges of the copy of (Y, S) replaceing r and put $E_{n}={ }_{n} \bigcup_{R_{m}} E_{r}$. We define $\Psi_{0}: Y_{\omega+1}(0) \rightarrow$ Graph as follows: we construct $\Psi_{0}(a)$ such that we start from $\left(\bar{X}, \bar{R}_{\omega}\right)$ and, for every $i=0,1,2, \ldots$, $i<\omega$, we join every

$$
\begin{aligned}
& x \in E_{\omega} \backslash E_{i} \text { by a copy of a directed path } p_{i} \\
& \text { of the length } 2^{i+1} \\
& x \in E_{i-k} \backslash E_{i-k-1} \text { by a copy of } t^{k+1} p_{i}, k=0, \ldots, i-1 \\
& \left.\begin{array}{l}
x \in E_{0} \quad \text { by a copy of } t^{i+1} p_{i} \\
-644-
\end{array}\right\} \text { with } \ell_{i} . ~
\end{aligned}
$$

If a, a ' \in obj $\mathscr{H}_{\omega+1}(0), f: a \rightarrow a^{\prime}$ is a morphism of 'ergs+1 (0), $\Psi_{0}(f)$ is equal to f on X, identical on the vertices of
$i \sum_{\sum_{0}}^{\infty} G_{3,10+i}$ and every copy of (Y, S) (or (\bar{Y}, \bar{S})) sends on the corresponding copy of it as "the identity". For $m \in \omega+1$, denote by $\langle a\rangle_{m}$ the object of $\mathscr{V}_{\omega+1}(0)$ obtained from $a=\left(x,\left\{R_{n} \mid n=\omega+1\right\}\right)$ by replacing all the relations R_{n} with $n<m$ by the empty relation \emptyset. Since, in the graph $\Psi_{0}(a)$, consecutive arrows appear only in the copies of the paths p_{i}, we see that

$$
t^{m}\left(\Psi_{0}(a)\right)=\Psi_{0}\left(\langle a\rangle_{m}\right) \text { for } m<\omega, h\left(\Psi_{0}(a)\right)=\Psi_{0}\left(\langle a\rangle_{\omega}\right)
$$

This implies that $t \circ \Psi_{n}=\Psi_{n+1} \circ \Psi_{\omega+1}\binom{n+1}{n}$ and $h \circ \Psi_{n}=\Psi_{\omega} \circ \mathscr{Y}_{\omega+1}\left(\begin{array}{l}\left(\omega_{n}\right)\end{array}\right.$ if we define $\Psi_{n}: \mathcal{G}_{\omega+1}(n) \rightarrow$ Graph, $n \leq \omega$, by

$$
\Psi_{n}\left(-x,\left\{R_{m} \mid m \geq n\right\}\right)=\Psi_{0}\left(X,\left\{R_{m} \mid m \in \omega+1\right\}\right) \text { with } R_{m}=\emptyset \text { for } m<n \text {. }
$$

This also reduces the proof that every $\Psi_{n}: \mathcal{V}_{\omega+1}(n) \rightarrow$ Graph is a full embedding to a proof that $\Psi_{0}: \mathcal{L}_{\omega+1}(0) \rightarrow$ Graph is a full embedding. However, the steps in the construction of Ψ_{0}, namely
a) the adding of the graphs $G_{3,10+i}, i=0,1, \ldots$
b) the replacing of each arrow (x, y) by a copy of (Y, S)
c) the replacing of each edge by a copy of (\bar{Y}, \bar{S})
lead to a full embedding of $\left(X, R_{\omega}\right)$ into Graph. And the length of the paths p_{i} forces that a compatible map $f: \Psi_{0}(a) \cdots \Psi_{0}\left(a^{\prime}\right)$ "recognizes" R_{n} for all $n=0,1,2, \ldots$ so that $f=\psi_{0}(g)$ for a morphism g:a $\longrightarrow a^{\prime}$ of $\mathscr{C f}_{\omega+1}(0)$.

Remark. For every $m \in \omega^{\prime}$, every diagram

of finite categories and faithful functors has a simultaneous representation $\Phi=\left\{\Phi_{j} \mid i=0, \ldots, m\right\}$ in the diagram

$$
\mathbb{G}_{f} \longrightarrow \mathbb{G}_{f} \longrightarrow \mathbb{G}_{f} \longrightarrow t \longrightarrow \mathbb{G}_{f}
$$

such that, for every a ε obj $k_{m}, \Phi_{m}(a)$ is already transitive. In fact, use II.14.b) and modify the proof of Theorem 1 (consi$\operatorname{der}\left(\tilde{X}, \tilde{R}_{n}\right)=\left(X, R_{n}\right) \perp{ }_{i} \sum_{3}^{m} G_{3,10+i}$ instead of the infinite coproduct).
III.2. Theorem 2. Let s:Graph \longrightarrow Graph be the functor

$$
s(X, R)=\left(X, R \cup R^{-1}\right), \quad s(f)=f .
$$

Then a diagram φ in \mathbb{C} at

$$
\mathrm{k}_{0} \xrightarrow{\mathrm{~K}} \mathrm{k}_{1}
$$

has a simultaneous representation in the diagram

$$
\text { Graph } \xrightarrow{s} \text { Graph }
$$

iff K is faithful.
Proof. 1) If there is a simultaneous representation $\Phi: \ell \rightarrow D$ then K must be faithful because s, Φ_{0}, Φ_{1} are faithful.
2) If K is faithful, then there is a simultaneous representation $\mathscr{C} \rightarrow \mathscr{C}_{2}$ (where $2=\{0,1\}, 0 \leq 1$), hence it is sufficient to construct a simultaneous representation $\Psi: \mathscr{y}_{2} \rightarrow \mathcal{D}$. For an object ($X,\left\{R_{0}, R_{1}\right\}$) of $\mathscr{g}_{2}(0)$ (we may suppose that R_{1} contains no j-cycle with $j>9$, see II.14) put

$$
\left(\tilde{X}, \tilde{R}_{1}\right)=\left(X, R_{1}\right) \Perp G_{3,10}
$$

In the graph ($\tilde{X}, \widetilde{R}_{1}$), we replace each arrow \xrightarrow{x} by a copy of the graph (Y, S) (see ($*$)) and then replace each edge C _d by the two arrows ($(\mathrm{c}, \mathrm{d}$) and (d, c). Denote the obtained symmetric graph by $\left(\bar{X}, \bar{R}_{1}\right)$. We may suppose $\tilde{X} \subseteq \bar{X}$. Choose a vertex z in Y, $x \neq z \neq y$, and denote by z_{r} the vertex z of the copy of (Y, S), replacing the arrow re R_{1}. We define $\Psi_{0}: \mathscr{g}_{2}(0) \longrightarrow$ Graph such that, for $a=\left(X, R_{0}, R_{1}\right) \in$ obj ef $_{2}(0)$, we have

$$
\Phi_{0}(a)=\left(\bar{x}, \bar{R}_{1} \cup T\right) \quad \text { where }
$$

$T=\left\{\left(\ell_{3,10}, z_{r}\right) \mid r \in R_{1}\right\} \cup\left\{\left(z_{r}, \ell_{3,10}\right) \mid r \in R_{0}\right\}$. The rest of the proof is analogous to the previous proof.

Remark. If k_{1}, k_{2} are finite (and k faithful) then \mathscr{C} has a simultaneous representation in

$$
\mathbb{G}_{\mathrm{f}} \longrightarrow \mathbb{G}_{\mathrm{f}}
$$

III.3. Let us denote by Bi Graph the category of all bigraphs, i.e. all $\left(X, R_{1}, R_{2}\right)$, where X is a set and $R_{i} \subseteq X \times X, i=1,2$, and all $f:\left(X, R_{1}, R_{2}\right) \rightarrow\left(X^{\prime}, R_{i}^{\prime}, R_{2}^{\prime}\right)$, which are $R_{i} R_{i}^{\prime}$-compatible, $i=1,2$. There are two natural forgetful functors $F_{i}: B i$ Graph \longrightarrow Graph, $i=$ $=1,2$, namely

$$
\begin{gathered}
F_{1}\left(X, R_{1}, R_{2}\right)=\left(X, R_{1}\right), F_{2}\left(X, R_{1}, R_{2}\right)=\left(X, R_{2}\right), F_{1}(f)=F_{2}(f)=f . \\
-646-
\end{gathered}
$$

Thus, we obtain a diagram

Theorem 3. A diagram φ in Cat

has a simultaneous representation in D iff the pushout in Cat
(x*)

is a subpullback in \mathbb{C} at and all the functors $K_{i}, H_{i}, i=1,2$, are faithful.

Proof. 1) Let there be a simultaneous representation $\Phi=\left\{\Phi_{0}, \Phi_{1}, \Phi_{2}\right\}: \varphi \rightarrow \varnothing$. Then K_{1}, K_{2} are faithful because $F_{i}, \Phi_{i}, i=1,2$, and Φ_{0} are faithful. Let $(* *)$ be the pushout of K_{1} and K_{2} in \mathbb{C} at. Denote by $F: G r a p h \rightarrow$ Set the forgetful functor (i.e. $F(X, R)=X$). Then $F \circ F_{1}=F \circ F_{2}$, consequently $F \circ \Phi_{1} \circ K_{1}=$ $=F \circ F_{1} \circ \Phi_{0}=F \circ F_{2} \circ \Phi_{0}=F \circ \Phi_{2} \circ K_{2}$ hence there exists $\frac{1}{F}: h \xrightarrow{H}$ Set such that $\bar{F} \circ H_{i}=F \circ \Phi_{i}, i=1,2$. Since $F \circ \Phi_{i}$ are faithful, H_{i} must be also faithful. To prove that the pushout ($* *$) is a subpullback, it is sufficient to prove the following: if a, a $\in \operatorname{obj}^{k_{0}}$ and $\alpha_{i} \in K_{i}\left(K_{i}(a), K_{i}\left(a^{*}\right)\right), i=1,2$, are morphisms such that $H_{1}\left(\alpha_{1}\right)=$ $=H_{2}\left(\alpha_{2}\right)$, then there exists $\propto \in \mathrm{K}_{0}\left(\mathrm{a}, \mathrm{a}^{\prime}\right)$ such that $\mathrm{K}_{\mathrm{i}}(\propto)=\boldsymbol{\alpha}_{\mathrm{i}}$ for $i=1,2$. But $H_{1}\left(\propto_{1}\right)=H_{2}\left(\propto_{2}\right)$ implies $\left(F \circ \Phi_{1}\right)\left(\propto_{1}\right)=\left(F \circ \Phi_{2}\right)\left(\alpha_{2}\right)$, i.e. the morphisms $\Phi_{1}\left(\alpha_{1}\right):\left(X, R_{1}\right) \longrightarrow\left(X^{\prime}, R_{1}^{\prime}\right) \quad$ and $\Phi_{2}\left(\propto_{2}\right):\left(X, R_{2}\right) \longrightarrow\left(X^{\prime}, R_{2}^{\prime}\right)$ are carried by the same set-mapping $f: X \longrightarrow X^{\prime}$. Since \dot{f} is both $R_{1} R_{1}^{\prime}$-compatible and $R_{2} R_{2}^{\prime}$-compatible, it is a morphism of BiGraph. Since Φ_{0} is full, there exists $\alpha \in k_{0}\left(a, a^{\prime}\right)$ with $\Phi_{0}(\propto)=f$. Then $K_{i}(\propto)=\alpha_{i}$ for $i=1,2$.
2) Let us suppose that the pushout $(* *)$ is a subpullback
in Cat and all the functors $K_{i}, H_{i}, i=1,2$, are faithful. Put $D=\{0,1,2,3\}$, where 1 and 2 are incomparable and both are less than $3,0=1 \wedge 2$ and apply the Lemma on the diagram ($* *$). Hence it is sufficient to construct a full embeddings $\Psi_{0}: \mathbb{G}_{\mathrm{D}, 0}^{*} \longrightarrow$ \rightarrow BiGraph, $\Psi_{i}: \mathbb{G}_{D, i}^{*} \rightarrow$ Graph (where $\mathbb{G}_{D, 0}^{*}$ is the full subcategory of $\mathbb{G}_{0,0}$, generated by all the $a=\left(X,\left\{R_{i} \mid i=0, \ldots, 3\right\}\right)$ with $R_{0}=R_{1} \cap R_{2}, R_{j} \subseteq R_{3}$ for $j=1,2, R_{3}^{\prime}$ contains no j-cycle with $j>9$, and (X, R_{3}) admit no morphism into any $G_{3, j}$ with $j>9$, see II.14; and $\mathbb{G}_{D, i}^{*}, i=1,2$, is a Σ_{0}^{i}-image of $\mathbb{G}_{D, 0}^{*}$) such that $\Psi_{i} \circ \sum_{0}^{i}=$ $=F_{i} \circ \Psi_{0}, i=1,2$. We construct the bigraph $\Psi_{0}(a)=\left(\bar{x}, T_{1}, T_{2}\right)$ as follows: We start from

$$
\left(\tilde{x}, \tilde{R}_{3}\right)=\left(X, R_{3}\right) \Perp G_{3,10} \Perp G_{3,11}
$$

Choose one fixed orientation of the edges in the graph (Y, S) (see (*)) such that there is no directed path from x to y and no directed path from y to x in the obtained directed graph; denote it by (Y, \tilde{S}); choose $z \in Y, X \neq z \neq y$. In the graph (\tilde{X}, \tilde{R}_{3}), replace each arrow by a copy of (Y, \mathcal{S}), denote the obtained directed graph by (\bar{X}, \bar{R}_{z}). If $r \in R_{3}$, denote by z_{r} the vertex z in the copy of (Y, \tilde{S}) which replaces r. Put $\Psi_{0}(a)=\left(\bar{X}, T_{1}, T_{2}\right)$, where
$T_{1}=\bar{R}_{3} \cup\left\{\left(\ell_{3,10}, z_{r}\right) \mid r \in R_{1}\right\}, T_{2}=\bar{R}_{3} \cup\left\{\left(\ell_{3,11}, z_{r}\right) \mid r \in R_{2}\right\}$
If $f: a \rightarrow a^{\prime}$ is a morphism of $\mathbb{G}_{D, 0}^{*}$, put $\left(\Psi_{0}(f)\right)=f(x)$ on X, ($\left.\Psi_{0}(f)\right)(x)=x$ on $G_{3,10^{H}} G_{3,11}$ and $\Psi_{0}(f)$ maps each copy of (Y, \widetilde{S}) on the corresponding copy of it as "the identity".

The proof that Ψ_{0} is a full embedding and that $F_{i} \circ \Psi_{0}=$ $=\Psi_{i} \circ \sum_{0}^{i}, i=1,2$ (where $\Psi_{1}\left(\left(X,\left\{R_{1}, R_{3}\right\}\right)\right.$ is defined as $F_{1}\left(\Psi_{0}\left(X,\left\{R_{0}, R_{1}, R_{2}, R_{3}\right\}\right)\right)$ with $R_{0}=R_{2}=\emptyset$ and analogously for $\Psi_{2}\left(\left(X,\left\{R_{2}, R_{3}\right\}\right)\right)$, is analogous to the previous proofs and it is left to the reader.

Remarks. a) If k_{0}, k_{1}, k_{2} are finite, then the represented bigraphs and graphs can be constructed also finite, see II.14.
b) The Theorem 3 can be generalized such that we investigate not only bigraphs but n-graphs with larger n and more complex scheme for the diagram of the forgetful functors. Since this generalization is straightforward, we do not describe it here.

References

[F] R. FRUCHT: Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compos. Math. 6(1938), 239-250.
[HN] P. HELL, J. NEŠETRKIL: Homomorphismis of graphs and of their orientations, Monatsh. für Math. 85(1978), 39-48.
[HP] Z. HEDRLIN, A. PULTR: Relations (graphs) with given finitely generated semigroups, Monats. Math. 68(1964), 213-217.
[N] J. NEŠETŘIL: On symmetric and antisymmetric relations, Monatsh. Math. 76(1972), 323-327.
[PH] A. PULTR, Z. HEDRLfN: Relations (graphs) with given infinite semigroups, Monatish. Math. 68(1964), 421-425.
[PT] A. PULTR, V. TRNKOVA: Combinatorial, Algebraic and Topological Representation of Groups, Semigroups and Categories, North Holland 1980.
[S] G. SABIDUSSI: Graphs with given infinite groups, Monatsh. Math. 64(1960), 64-67.

Mathematical Institute, Charles University, Sokolovská 83, 18600 Praha 8, Czechoslovakia
(Oblatum 11.7. 1986)

