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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28,1 (1967) 

CLOSED COPIES OF THE RATIONALS 
Eric K. van DOUWEN < 

Abstract: We give a simple proof of Hurewicz s theorem that 
if X is a metrizable space, then every closed subspace of X is 
Baire iff the rationals do not embed as a closed subspace into X. 
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Call a space crowded if it has no isolated p o i n t s . In this 

note we give a simple proof of the following result. 

Theorem. Let X be a first countable regular space. Then eve

ry closed subspace of X is a Baire space iff X has no countable 

closed crowded subspace. 

In view of the well-known fact that up to homeomorphism the 

space of rationals is the only countable first countable crowded 

regular space. [S3, this is a small generalization of the theorem 

of Hurewicz, tH3, mentioned in the abstract . The proof was found 

in 1975 or 1976j at the occasion of the Sixth Prague Topology Sym

posium I have been urged to finally publish i t . At the Symposium 

G. Debs also announced the Theorem. 

We proceed to the proof. Necessity is clear. To prove the 

sufficiency it suffices to prove the following: 

Claim. Let Y be a first countable regular crowded space. 

If (J. is a countable collection of dense open sets in Y then Y 

has a countable crowded subspace K such that K\ K£ HQh • 

For ycY, if A is a collection of subsets of Y we say that 

A converges to y if for every neighborhood U of y one has Ac U 

for all but finitely many A e Jl , and if A is a subset of Y we 
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say A converges to y if 4-§»1:acA} converges to y. 

He prove the Claim: Enumerate (#> as <Gn:ne a> > . Construct 

a sequence <%nm € <*>> of pairwise disjoint open collections in 

Y and a sequence <K :ne<*>>of countable subsets of Y as follows: 

*tt * iy}. At stage n+i, for each U € Un> choose kR(U)e 

€ UAG and choose an infinite pairwise disjoint collection 1rn(U) 

of nonempty open sets that converges to k (U) and satisfies 

(1) UV n(U)fiUnG n, 

Let 

K+V U i r n ( U ) : U € ^ n l and Kn = ran(kn). 

Note that 

( 2 ) _ K n S U T t n 8 n d u a i n + 1 G U U n M ( n and V \ + 1 * Bn. 

This completes the construction of <Kn:nea>> and <U :ne<i>>. 

Of course,, the subspace K= U^^K of Y is countable. It re

mains to show K is crowded and satisfies K\ K & ftt^* 

For each n€0>and each U € 1*n the subset ^kn+,(V):Ve Yn(U)\ 

of K r converges to k (U) since 1f(U) converges to k (U), and 

it does not contain ktU) since k_(U)t K_ , . Hence K is crowded, n n « n •*• A 

For the proof that K is closed we point out that since the 

W s are pairwise disjoint, it follows from (2) that 
i 

(3) Vj6 co VU c 1ij:Uf.K£<k.(U)n uUVj(U). 
To see this consider any j c <*> f U 6 *U. , and s e a> . We have 

S > J * # K S . S uii3& . . . s "uo i j + 1 - * K s nu&u i v * ^ + r V s $* 
= . U ¥ . ( U ) j 

s=j » * k . ( U ) 6 K AU= «?k .(V):VAU4r0f = ( k , ( U ) l ; and 
J ** J J 

s< j «* Ksnu$Ks n y ^ + 1 s K g n uu s + 1 *0 . 

The crux of the matter is that (1) and ( 3 ) imply 

(4) V j f t 4 > Y*J c 1 L : K n U £ U . 

Mow consider any xsl<\K. Since Vj « c-> EU1t^+| £ G. j,
 D V (2), we 

prove x « n ( ^ if we show that there is a sequence <U^: j€ <i>> with 

Vjc<-> £x«U.« <U.): let U =Y (recall 14 *4Y|). Next, consider 
J J ° 4. ** * 

any j e c* and assume U. known. As xe K, but x=fek.(U.), and as 

TAUz) converges to k.(U.), we see from (3) that there is 
J j j j 
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U. , fe 1 l \(U.) with xeU. ,AK. Then x€U- , because of (4). This 
3+1 3 3 3+1 3 + 1 

completes the construction of < U ;n & u>7* 
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