
Commentationes Mathematicae Universitatis Carolinae

Petronije S. Milojević
Solvability of semilinear equations with strong nonlinearities and applications
to elliptic boundary value problems

Commentationes Mathematicae Universitatis Carolinae, Vol. 28 (1987), No. 4, 735--750

Persistent URL: http://dml.cz/dmlcz/106585

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/106585
http://project.dml.cz


COMMENTATIONES MATHEMATICAE UNIVERSITAJIS CAROLINAE 

28,4 (1987) 

SOLVABILITY OF SEMILINEAR EQUATIONS WITH STRONG 
NONLINEARITIES AND APPLICATIONS TO ELLIPTIC 

BOUNDARY VALUE PROBLEMS 

P.S. MILOJEVIČ 

Abstract. Solvability of two classes of semilinear equations involving strongly 
nonlinear perturbations of type (M) with respect to two Banach spaces is 
established. An application to elliptic BV problems is also given. 
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1. INTRODUCTION 

Many problems in analysis reduce to solving operator equations of the form 

(1) XCx -Ax-Nx=:f, 

where / is a given element in a Hilbert space JJ, A € J?, A is linear, C and 
N are nonlinear mappings. Motivated by applications to strongly nonlinear 
elliptic problems, we shall study Eq. (1) in the following setting. 

(i) There is a pair {V, V*} of Banach spaces in duality with V C H C V*, 
i.e., there is a nondegenerate continuous bilinear form <,> on V x V*. (V* 
need not be the dual of V in the usual sense.) Suppose that V is reflexive 
and compactly embedded in H, \ < x,y > J < ||-c||v||y||v* onVxV* and the 
duality < ,> is compatible with the inner product ( , ), i.e., < x,y >= (x,y) 
for(x,y)€VxH. 

(ii) Let {17,(7*} be another pair of Banach spaces in duality compatible 
with (,) such that U is separable, U CV and V* C U* and the injections are 
continuous and dense. 
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(ui) A;V —• V* is a continuous "variational extension" of a closed linear 
mapping Ax:D(Ai) C H -> H such that U C -D(Ai) c V and < Ax,$f >= 
{A\z,y) for x € -D(-4i) and y € V. Moreover, let C, N:D(N) c V - ^ t / 1 

be such that 1V - C is of type (M) relative to (17, V) with *7 C D(N) and 
(iV - C)(U) c if (see Definition 1 below). 

Under some additional conditions, we shall prove that Eq. (1) is solvable 
for each X € R and each f € H. If a is the quasinorm of C (i.e., a = 
Km •ttP||x||~*.0o II^H/iWI) an<* ^i *s t n e ^ r s t eigenvalue of Ali, then the problem 
is not coercive when |A)o > Ai. 

The above idea of using two pairs of Banach spaces with compatible 
dualities for studying (locally) coercive operator equations (with f of small 
norm) is due to Kato [10]. Earlier, Hess [9] has also studied operator equations 
in a less general setting under a global coercivity condition. One importance 
of studying operator equations in such a setting lies in the fact that certain 
differential equations, which have been successfully handled earlier only by 
the method of Nash-Moser type (cf. Moser [15] and Rabinowitz [16]),reduce 
to them, and the problem of "loss of derivatives" is not present [10]. Another 
importance of this setting is demonstrated in the paper by an application to a 
class of (noncoercive) semilinear elliptic equations with strong nonlinearities 
(cf. also Hess [9]). Earlier, coercive quasilinear elliptic equations with strong 
nonlinearities have been studied by many authors using either truncation 
techniques and/or approximation results of Hedberg's type and generalized 
degree theories (e.g. [5,7,8,9,12,17]). 

The second abstract problem we treat is the solvability of 

(2) Kz~~\Lz + Mz~f, (z€D(M), f € H)% 

where L;H —• JET is linear symmetric and compact and Kt M;D(M) c H -+ H 
are nonlinear with ItC+M of type (M) relative to ((/, H). It is an extension of 
the problem studied by Kesavan [11] when M:H—>H is completely continuous 
(i.e. Mzn —• Mz if zn —* z (weakly)) and K is the identity. 

2. SOLVABILITY OF BQ. (1) WITH |A|a < A! 
Our basic assumptions on Ai and A are: 
(3) Ai is symmetric and for some positive c £ c(Ai)t the spectrum ofAu Be = 

Ai+cl is positive, *.e., (B*zt z)>0for0^z€ D(At) and B~l: H - • H is 
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compact 
(4) There are constants Ci > 0 and c^ > 0 such that 

< Ax, x >> ct || x \$ -c2 || x ||2 for all x€V. 

Let Ai < A2 < ..., Afc —• 00, be the sequence of eigenvalues of A% and 
{€k}T be the corresponding system of orthonormal eigenvectors complete in 
U and H. Set Hn = lin.sp.{ei, ....en} and let Pn:H -+ Hn be the orthogonal 
projection onto Hn for each n. Since {fik = Xk + c} and {e*} are the eigen
values and eigenvectors of BCy we have by the variational characterization of 

(5) (£cx,x) > px || x ||2 and(Be(I^Pk)xi(I-Pk)x) > Mfc+1 \\ (I-Pk)x ||2, 

Vx € JD(-4I). 

Now we define the class of permissible nonlinearities. 

Definition 1. (cf. [9]) Let U C D(N) C V and N : P(N) - £1*. Then 
N is said to be of type (M) relative to (U,V) if (i) N is continuous from 
each finite-dimensional subspace of U into the weak topology of U* and 
(ii) whenever {xn} C £/,xn —* x in V, Nxn —•> y in J7* with y € V* and 
limsup < Nxn,xn ><< y,x >, then x € D(N) and Nx = y. If y in (ii) is 
given in advance, we say that N is of type (M) at y relative to (J7, V). 

Recall that N : D(N) —• U* is quasibounded if, whenever {xn} C U is 
bounded in V and < Nxn,xn >< con«t. || xn ||v, then {Nxn} is bounded in 
U*. We say that C has a linear growth if there are positive constants a, b and 
p such that 

(6) 4 ||Cx|| < a||x|| + b for all \\x\\ > p, xeU. 

Our first result is: 

THEOREM 1 (cf. [14]). Let \X\a < Xx, (S),(4), and (6) hold, (N~~XC)(U) C 
H, (Nx, x) > 0 for z € U, N be quasibounded and N - AC 6c of type (M) 
relative to (U, V) and A : V —• V* be linear and continuous. Then Eq (1) is 
solvable in V for each f € H. 
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proo/. Let / e # be fixed and choose an r > p such that || / || +W& < 
r(Xl -..(Aja). Then, for each x 6 <9#(0,r) n # n , n > 1, we have 

(APnCx - Axx - PnNx - Pn / , x) = (ACx - Aix - Nx - / , x) 

< ( | A | a - A i ) | | x | | 2 + ( | | / | | + W b ) | | x | | < 0 . 

Hence,thehomotopy#n(t,x) = t ( A P n C x - ^ i x - P n N x - P n / ) - ( l - - t ) x ^ 0 
on [0,1] x 3B(0, r) n # n , and therefore the Brouwer degree deg (APnC - Ax -
PnN~~Pnf, # n # n , 0 ) it 0 for each n > 1. Thus, there is an xn 6 #(0, r )n# n 

such that APnCxn - Axxn - PnNxn = Pn / , n > 1. Moreover, (4) implies 
that 

Cl || Xn ||v - c 2 || Xn | | 2 < (A l iXn ,Xn) 

<a |A | | | x n | | 2 +( ! | / | |+ |A | f e ) | | x n | | , 

and consequently, {x„} is bounded in V. Next, 

< J\txn)xn >= (JVxn,xn) = (PniVxn,xn) = (APnCxn - Aixn - Pn/,x„) 

< a | A HI x„ f +(|| / || +|A|6) || x„ || - < ^xn ,xn > 

< O I A HI XB ||2 +(|| / || +|A|6) || Xn || + || A IHI Xn | |v< const. || Xn ||v, 

and therefore, {Nxn} is bounded in U* by the quasiboundedness of N. Thus, 
we may assume that xn —* x in V, Axn —- .Ax and (1V - AC)xn —k « in (7*. 
Moreover, for each u € # n , < (1V - AC)xn,u >= -(.AiXn + Pn / , ti). Then, 
for each u € Un>i#n , u€ Hk for some fc and for each n > fc, 

< (1ST-AC)xn,u>= - < .Axn + / ,u>-> - < .Ax + / , u > . 

Since U#n = U, it follows that < (1V - AC)xn,u >—> - < Ax + f,u > for 
each uEU, and therefore y = — .Ax — / . Moreover, 

(< Axn, xn - x >>< .Ax, xn - x > - c 2 || xn - x ||2 

imples that < Ax,x >< iiminf < Axn,xn > and consequently, 

limsup < (1V* - AC)xn,xn >= limsup[(-/ ,xn)- < Axn ,xn >] 
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< - < Ax + / , x > . 

Hence, x € D(N) and XCx - Ax - Nx = / by property (M).| 

Remark I. When A = 0 (< A_). Theorem 1 is a global analogue of the result 
of T. Kato [10] for mappings of the form T = A + 1V (compare also with Hess 

[9]). 

S. THE CASE |A|a > Xx 

This is a noncoercive case and a major additional difficulty is to show that 
the set 

S\(f) = {x € Hn | APnCx - Axx - Pn(Ni + 1V2)x = Pn / , n = 1,2,...} 

is bounded in # , where now JV = Ni + 1V2 : P(iV) C V ~+ U*. 

PROPOSITION 1. Let (8) and (6) hold, N be such that N((U) C JET, i=l,2, 
N% be of type (M) at 0 relative to (U,H) and 
(7) (NiXyx) > 0 for x € U, i = 1,2, and x = 0 if Ntx = 0. 
(8) If (Nixn9xn) —• 0 for some {xn} C U bounded in H, then Ntxn -* 0 
tit U\ 
(9) There is a 6 > 1 such that Nx(tx) = t6Nt(x) for all x € U, t > 0. 
(10) There are positive constants a_, &i, ana* #i < S such that 

II N2x ||< ai || a; \\Sl +&i /or all x€U with |j a; || Zarae. 

Tfcen S\(f) is bounded in H for each X with (tyt > Ai and each f € H. 

Proo/. Let |A|a > Ai be fixed and suppose that S\(f) is not bounded in H 
for some / € H. Let a;nk G £*(/) be such that || xnk ||~* oo as k ---> oo, and 

^ U" = Fintl- TheD 

(11) (^l«-_,t«-.) = || ||f _ . I" II ««* ||2 

-(-*e«n*,«nj - HZnjr'ttlV- " Ac)2nt - /,«„..)] — 0 tt« fc -+ OO 
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and N%unk —- 0 in U* by (8). Since we may assume that unk —- u in # , the 
(M)-property of N\ implies that u 6 -D(Ni) and N%u = 0. Hence, u = 0 by 

(7). 
Next, let a € (0,1) and c > 0 small be fixed, a = a -f € and m > 1 be 

such that Am+j - |A|o > a and || (I - Pm)f ||< a. Then, for each n* > m 
large and fixed, (6) and (7) imply that 

(|A|5 + c)(|| Pmxnk ||» + || ( J - Pm)xn t f ) > ((APntC + c)xB 4 )x nJ 

= (BeXnk,Xnk) + (Pn^iVj + N2)xnk,xnk) + (P n *Lx n J 

> (B cPmxn t )PmxnJ + {BC(I - Pm)xn t ) (J - Pm)xnJ + (P m LP m x n J 

+(( / - Pm)f, (I - Pm)xnk) > Ml || Pmxnt f +um+l || (/ - Pm)xnk ||-

- || Pmf IHI Pmxnk || - || ( / - P m ) / IHI (J - P m ) x n t II, 

or after rearranging, 

(Am+1 - |A|5) || (J - Pm)xnk ||» - || (J - P m ) / IHI (J - Pm)xnt || 

< ( | A | 5 - A 1 ) | | P m x n J | - + | | / | | | | P m x n J | . 

Since || (J - P m ) / ||< a, we get, after dividing by || xnk ||2, 

(Am+1 - |A|5) || (J - Pm)unt ||- - a || xn, ||-*|| (J - Pm)«nt || 

< (|A|« - A.) || Pm«n4 ||2 + || *», ||--|| / (HI Pm«nt ||, 
or 

(12) (Am+1 - |A|5) || (J - Pm)«nit ||- - a || (J - Pm)unt || 

< (|A|5 - A,) || Pmunk ||- + || / IHI Pmunk | | . 

On the other hand, we may assume that Pmunk —• vo € Hm as k —• oo 
and ( J - Pm ) unk — -vo € .ffm. Hence, t>0 = 0 and || (I - Pm)tin* ||— 1 
as k —• oo since 
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1 =11 «»* IIHI Pn.U„, ||2 + || (/ " Pm)Unk ||2 • 

Finally, passing to the limit in (12) we obtain Am+i - |A|fi < a, which 
contradicts our choices of a and m. Hence, Sx(f) is bounded in H for all A 
with |A|a > Ai and / eH. | 

Our basic result in this case is: 

THEOREM 2 (cf. [14]). let \X\a > Xlf (S) -(4) hold, N~NX+N2be such 
that N4(U) C H, i=l,2, Nt be of type (M) at 0 relative to (17, H)} u = 0 if 
(Niu,u) = 0 and (6)-(10) hold. Suppose that N : D —• U* is quasibounded, 
1V- AC is of type (M) relative to (U,V) and A : V —• V* is continuous. Then 
Eq. (1) is solvable in V for each f € H. 

Proof. Let / € H be fixed. We will show first that each finite dimensional 
equation in S\(f) is solvable. For each n > 1, we claim that there is a constant 
cn > 0 such that 

(13) (Ni*,s) > cn || x \\l+6 for each x € Hn. 

If not, then there is a sequence {xk} C Hn for some n such that 

(Ntxk,xk) < | II ** | |1 + l for each *, 

and, setting uk = j-fj^, we get 

(14) 0 < (JVitt*,t**) < ~ -> 0 os k — oo. 

We may assume that u* —• u in Hn and, passing to the limit in (14), we get 
(1Vit*,t*) = 0. Hence, t* = 0 in contradiction to || u ||= 1, and therefore (13) 
holds for each n and some cn > 0. 

Next, we choose rn > p such that Iflbtlili < \% - |A|a + cnrn-* and -*°*e 

that for each x € dB(0, rn) n Jfn, 

(AC* - A-* - Ntx - -V2* - /,x) < (|A|a - A-. - cnrn~ l + U I ± i £ )r* < 0. 
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Hence, as before, there is an xn € Hn such that \Cxn ~ A\Xn - Pn(N\ -f 
N%)xn = P n / for each n > 1. Moreover, S A ( / ) is bounded in H by Proposition 
1, and is also bounded in V by (4). Finally, the completion of the theorem 
can be carried out as in Theorem l. | 

4. SOLVABILITY OP EQ. (2) 
We assume that K : D(M) C H —• H has a linear growth and is coercive, 
i.e., 
(15) There are positive constants a,6,c, and p > 0 such that 
(i) \\Kx\\ <a||x|| + b for all \\x\\>p, 

(ii) (Kxtx) > c\\x\\2, for all x € D(M). 
Again, the noncoercive case is harder and a result analogous to Proposi

tion 1 holds. 

PROPOSITION 2. Let L : H -+ H be a linear, symmetric? positive and 
compact mapping, Lek = \k&k for k > 1 with {ek} C U and complete in H, 
and {.fl"n,Pn} as before. Suppose that M = Mi + M2 : D(M) C H ~+ H is 
such that M\ is quasibounded and of type (M) at 0 relative to (U,H), Mi, 
M2, andK satisfy (7), (9), (10), and (15) on U, respectively. Then, for each 
\>c\i% and each f€H, the set S\(f) = {x € Hn | PnKx~\Lx+PnMx = 
P n / , n = 1,2,...} is bounded in H. 

Proof. Let A > cAj"1 be fixed and suppose that S\(f) is not bounded in H 

for some f € H. Let xnk € S\(f) be tSuch that || xnk ||-~* oo and unk = Tnr*-rr» 

Then, (Miunk,unk) —• 0 as in (11), and therefore {Mittnfc} is bounded in H 
by the quasiboundedness of Mi. Thus, we may assume that unk —" u and 
Miunfc —- y in H with y = 0, since L is injective and 

PПkKxПk n Ҡ£ PnÈ(M2xПk - /) 

Moreover, Miu = 0 since Mi is of type (M) at 0, and consequently u = 0. 
Next, let a € (0,1) be fixed and m > 1 be such that || (I - Pm)f \\< a 

and c - AAm+i > a. Then, using the variational characterization of the 
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eigenvalues of L: 

(Lx,x) < A, || « ||2 and(L(I-Pn)x,(I-Pn)x) < AB+1 || (I-P„)x ||2, x €H, 

we obtain, as in the proof of Proposition 1, that for each ra* > m 

(c ~ AAm+1) || (/ - Pm)unk ||2 - a || (I ~ Pm)Unk || 

< ( A A 1 - c ) | | P m t t n 4 | | » - | | / | | | | P m « l l f c | | . 

Again, || (I - Pm)i*nfc l|-* 1 a*-d || Pm^n* | H 0 as fc -+ oo, and therefore 
passing to the limit in the last inequality we get that c — AAm+i < a, which 
contradicts our choices of m and a. Hence, S\(f) is bounded in H.% 

Our main solvability result for Eq. (2) reads: 

THEOREM 3. (cf. [14]) Let L : H -* H be linear, symmetric, positive, and 
compact, {Hn,Pn} be as in Proposition 2, K, M = M\ + M% : D(M) C H —• 
H be such that (15) holds and K + M is of type (M) relative to (U>H). 

(a) If M is quasibounded and (Mx,x) > 0 for x E D(M), then Eq. (2) is 

solvable for each f € H and each A < cAjf1. 
(b) If M\ is quasibounded and of type (M) at 0 relative to (U,H), M\ and 
M2 satisfy (7), (9), and (10) on U, respectively, and u = 0 if (M\U,u)= 0, 
then Eq. (2) is solvable for each f € H and each A > cAj"1. 

Proof. Let / € H be fixed. We will show first that each equation PnKx — 
ALx + PnMx = Pnf is solvable in Hn. Suppose that A < cA^1. If A > 0, then 
choosing r > 0 such that || / ||< (c - AAi)r, we get that for z € B(0,r) f)Hn, 

(PnKx - \Lx + PnMx ~ Pnf,x) > (c - \\\) || x ||2 - || x HI / ||> 0. 

If A < 0, then taking r > 0 with ||/| | < cr, we get that for x € B(0, r) fl Hn 

(PnKx - \Lx + PnMx - Pn/,x) > c||x||2 - ||/||||*|| > 0. 

Hence, using the homotopy Hn(ty x) = *(Pniir*- AJL*+PnMx-Pn /)+(l-t)s 
on [0,1] x .0(0,r)HHn, we get that deg(PnlT - \L + PnM,B O Hn,Pnf) # 0 
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for each n > 1. Thus, there is an xn € #(0,r) H # n such that Pn!ifxn -
XLxn + PnMxn = Pnf with n > 1. 

Next, if A > cAj"1, then (13) holds for M% and each n. Now, we choose 

rn > 0 such that ^ < c-AAi+c^*""1 , and note that for x € d £ ( 0 , r n ) n # n 

(PnKx - XLx + PnMx - P n / , x) 
>(c-XXl)\\x\\*+cn\\x\\>+*-\\f\\\\x\\>0. 

Hence, as above, PnKxn-XLxn+PnMxn = Pnf for some xn € #(0, rn)f) 
Hn and each n, and {xn} is bounded in # by Proposition 2. 

Now, since {xn} is bounded in either case, some subsequence xnk —- x in 
# . It remains to show that Kx — ALx + Mx = / . Since M is quasibounded 
in either case and 

(Mxn ,xn) = (PnMxn ,xn) < ~c || xn ||2 +A(Lxn,xn) + (/,xn) 
< const. || xn ||, 

it follows that {Mxn} is bounded and a subsequence (K + M)xnk —> y. 
Moreover, 

Pnk(K + M)xnk = PnJ + XLxnk ~- / + XLx = y 

and 
limsup((# + M)xnk, x n J < (XLx + / ,x) = (y,x). 

Hence, x 6 D(M) and (K + M)x = y by property (M), and therefore, Jfx — 
XLx + Mx = / . | 

Remark 2. Analyzing the above proof we see that xnfc —» x if either K + M 
is of type (S+) (i.e. xn —• x if xn --- x and limsup((i.r + M)x n ,x n - x) < 0), 
or K + M is compact on # . When Mi and M2 are completely continuous on 
# , and K = J, Theorem 3 has been proved by Kesavan [11] using different 
type of arguments. 

S. AN APPLICATION 
Let Q C Rn be a bounded domain with the smooth boundary dQ, H = L%(Q) 

and W*(Q) be the usual real Sobolev space with norm || . ||*, k > 1 an integer. 
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Let F = Fi +F2, G : Q x i? --> i? be Caratheodory functions and F be a closed 
subspace of W^(Q) containing Wp(Q). 

In this section we shall establish the weak solvability in V of the semilmear 

elliptic equation 
(16) 

J2 (~l)WD°(aa0(z)Dfiu(x))+F{xr«(*))-AG(s, « ( . * ) ) = / ( * ) , * € Q 
!<*!,|0|<m 

where the coefficients aa^(x) = apa(x) are real valued, smooth and bounded, 
f E L2, A G R, F is strongly nonlinear, and G has linear growth. 

We begin by specifying conditions on the linear p u t . 

fHl^ The bilinear form a(u,v) = ICi t t i^ i jCmC^^ 1 1 ^^*) -^ *» £***£«* <*» 

V, i.e., tAerc are constants Ci > 0 ami c^ > 0 attdl rAa* 

a(«,ti) > cx || « |& ~ e 2 § « f , / o r m € K 

Using the Lax-Milgram theorem, one can show (see, e g . , [2Q tbat «(«,»} 

generates a linear, closed, and densily defined mapping j§x : Hfjti) C i*j —• 

L2 , w-th compact resolvent, characterised by D{A%} = {« € V f / o r #onte & € 

L2?a(te,r) = (fc, v) for all v € V} C fV-f** *»d •(***) = (-Ai***) fe-f « € 

D(Ai) and v € V. Let {B3}™ be boundary dxilere.atial operators of orders 

mj < 2rn, 1 < j < m, such that the problem 

£ (-i)Nx>>^(*)x>M = / M « « 
l«l.t-9|<» 

*.«(*) = £ »*-(*>-»••(») = o «. dQ 

is regularly elliptic (ct t e.g., M). S** i ^ ? * = {• € • ' iPHfl) I % « = 
0 on dQ, j = 1 , . . . wi}. We assume (cfl [l[)r 

crtAonotfnol basis of eigenfmnctions {a*} m £^; -Ai«* = *%*&* 

Let Mn = I tn .ap . {« i , . . . t tn} ,^ = Wj«fii H W ^ 6 wild* * > « M * { 1 + 

[f ] ,2m} and note that W C C(Q) by the Sobolev embedding theorem, if 
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QaPiBja and dQ are sufficiently smooth, then UJEfn = U for some closed 
subspace U of W. Indeed, write k = 2TO + 2rm + s for some r > 0 and 

0 < s < 2m, and note that Bc : W2
2m+2,m+<,(Q) n wfm -> W2

2tm+*(Q) 
is a homeomorphism for each integer i G [0,r]. Let t = 0 and note that 

UHn = W$ since VF|m is dense in Wj and UBn = W%m (cf. [1]). Since W% is 

a closed subspace of W%, U0 = B ^ W f ) is closed subspace of W^m+# nwfm 

and UBn = LI0. To see this, let / € U0,g = Bef G W% and grn G B n be 

such that gn -» g in flVJ. Then, B~lgn —• / in C/0 with B~xgn G ifn, and 

therefore UBn = C/0- Next, let i = 1 and note that C1i = B^^f/o) is closed in 

W%m+*(Q) fl W|m and l)Hn = (7i as above. Proceeding in this way, we get 

that U = Ur is a closed subspace of JV with UHn = U. 
Now, denote by <,> the usual duality between V and its dual V* or 

U and U* and note that < ,> is compatible with the inner product ( , ) 
on H in either case. Since a(u,.) is a continuous linear functional on V for 
each u G V, it defines a continuous linear mapping A : V —• V* such that 
a(u,v) =< .Au,t> > for u,v G V, and < ALu,v >= (Aiu, v) for u G £>(Ai), v G 
V. 

Regarding the nonlinear part, we assume: 

(Fl) Fi(x,0) = 0 and Fi(x,.) is increasing in a neighborhood of 0 for a.e. 
x £Q, and for each s > 0 there is a function ha G L2 such that 

sup | .Ғi(M) |< hа(x) and Fг(x,t)t > 0 for a.e.x єQ, t є R. 

(F2) | F2(x;t) |< a(x) + b(x) \t\for a.e.x €Q,t€R and some a,b G L2. 
(FS) s ss 0 t/ Fi(x, a) = 0 /or aome i € Q , and Fi(x, st) = s*Fi(a;, t) for a.e. 
x€Q,t€R,s>0 and some 6 > 1. 
(Gl) \G(x,t)\ < c(x) + d(x)\t\ for a.e.x €Q,t€R and some c,de L2. 

Let D(iVi) = {u € V \ Ft(x,u) and .Fi(s,u)u are in Lx), and C,N = 
Ni+N2 :D(Nt) - • 17* be defined by < (7u,v >= (G(x,u),v) and < Niu + 
N2u,t> >= (.Fi(ac,u) + F2(x,u),v) for u G XKNi) and t; 6 £/. By (Fl), 
U C D(Ni), N is well defined and N(U) C H. Moreover, (6) holds for some 
constants a and 6, by (Gl). 
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PROPOSITION 3. (a) If (Fl) holds, then Nt : D[Ni) -+ U* is of type (M) 
at 0 relative to (17, L2) and (8) holds. 
(b) If (Fl), (F2), and (Gl) hold, then N : D[N%) -+ U* is quasibounded and 
N - AC is of type (M) relative to (17, V). 

Proof, (a) Suppose that {un} C CT,un —- u in L%^N\un —- 0 in U* and 
limsup(Niun,un) < 0. Then Fatou's lemma and (Fl) imply that (Niun,un) 
—• 0, and therefore we may assume that Ki(-c,un(a;))un(a:) —• 0 a.e. in Q. 
Since F\(x, t)t is also increasing in t in a neighborhood of zero for a.e. x € <?, 
it follows that un(x) —• 0 a.e. in Q. To show that un —• 0 in Zq, let c > 0 be 
fixed and, for any n > 1, define Qt = {x 6 Q || un(a;) |< - } and Q2 = QV?i-
Then, for any measurable subset A C Q, 

I \un(x) \dx < I I un(x) I <fx -h c / u (̂a;)da: < —------- + const.c. 
7A JAnQi 7>lnQa c 

Hence, un —• 0 in L\ by Vitali's theorem, and u = 0 with NiO = 0 since 
un —- u in L\. 

To see that (8) holds, let {un} C U be bounded in L2 and (Niun, un) —• 0 
as n —• 00. We get, as above, that un —- u in L2,un —• 0 in .Li and therefore 
u = 0. On the other hand, for any c > 0, 

(17) I fi(x,ttn(*)) |< sup I Fi[x,t) I +€Fi(xfun(a))ttw(*) 

and, for any measurable subset A C Q, ^ 

/ I fi(*,Un(«)) I rfx <|| hi \\Ll{A) -rconst.e. 
J A 

Hence, by Vitali's theorem, .Fi(.,un) —• .Fi(.,u) = 0 in Lj, and therefore 
Niun — 0 in U*. 
(b) Note first that C,N2 : V —• L% are completely continuous since V is 
compactly embedded in I^* L^ * : U —• V be the natural injection. Next, 
let {un} C U,un -* u in V,(N - AC)un -*• t*v in (7* for some v € F* and 
lim sup < (N - AC)un,un > < < v,u > . Hence, in view of (17), Vitali's 
theorem and Fatou's lemma imply that Fi(.,un) —• JFI(.,U) in L% and 

/ F\(x,u)udx < liminf / Fi(x,un)undx < const. 
JQ JQ 
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Thus, u € D(Nt),Niun -* Ntu in U* and (N - XC)un = iV û,* + N2un — 
XCun — JViu + N2u - ACu = (N - AC)u = t*v, proving that (N - XC) : 
D(N%) —* #* is of type (M) relative to (U, F). Moreover, using (17) as above, 
we see that N% is quasibounded and therefore such is JV = Ni + JV2 by the 
boundedness of N2*§ 

Now, let A € -R and / € L%. We are looking for a solution u of the 
following variational problem: 

i)vdx -XfQ G(x, u)vdx = (/, v) Vv 6 W$ fl V, 
(18) ' 

ía{u,v) + JQF(x,u} 

\u€ D{Ni) C W2
m 

which can be considered as weak formulation of Eq. (16). We have: 

THEOREM 4. Let aap,bja anddQ be sufficiently smooth, (HI), (H2), (Fl), 
(Ft), and (Gl) hold. Then BVP (18) has a solution for each \X\a < Xt and 
each f € L2. If, in addition, (FS) holds, then the same conclusion is also 
valid for \X\a > Aj. 

Proof. Let t : U —• V be the natural injection and i* : V* —• U* be its dual 
mapping. Define a bilinear form on V x t*(F*) by < u,t*v >=< u,v > for 
u € V, v € V*, and note that < t*Au, v >=< Au, v > for u, v € V. Since BVP 
(18) is equivalent to the operator equation Xi*Cu — i*Au — Nu = —**/, the 
conclusions of the theorem follow, in view of Proposition 3, from Theorems 
1 and 2 with V*,AC - A and / replaced by t*(V*),**(AC - A) and t*/, 
respectively^ 

For the sake of comparison, corns? the BVP 

f - A u = ± I u p""1 u + Au+ / in Q C Rn 

u = 0 on dQ. 

Theorem 4 implies that BVP (19-) has a weak solution for each A € J£» / € L% 
and p > 1. However, the situation is quite different for BVP (19+) and has 
been studied by many authors. Many exsistence results on positive solutions 
of (19+) with p < ^ | are known (see the review article by PX. lions [13] and 
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the references in there). In the critical case, when p =-= ^ | , Brezis-Nirenberg 
[6] have shown that BVP (19-f), with / = 0, has a positive solution only 
for A € (0, Ax) provided n > 4 and Q is star shaped. If, in addition, Q is 
not contractable and n > 3, Bahri-Coron [3] have established this fact also 
for A = 0 (using the methods of algebraic topology). For the exsistence of 
infinitely many solutions of (19+) with A = 0, we refer to Bahri-Lions [4] and 
the references therein. 

Remark S. When 1< p < ^ | (p > 1 if n < 2), the weak solvability of (19-.) 
was proved by Kesavan [11] using different methods. When F% = 0, A =-= 0 and 
A is coercive, Theorem 4 is contained in Hess [9] with m ~ 1, and in Webb 
[17] and Brezis-Browder [5] (under an additional condition on F) with m > L 
For an ^plication of Theorem 3, with M : H —• H completely continuous, to 
the Von Karman Equations, we refer to [11]. 

The author would like to thank the referee for pointing out some inaccu
racies in the paper. 
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