Commentationes Mathematicae Universitatis Caroline

Petronije S. Milojević
Solvability of semilinear equations with strong nonlinearities and applications to elliptic boundary value problems

Commentationes Mathematicae Universitatis Carolinae, Vol. 28 (1987), No. 4, 735--750
Persistent URL: http://dml.cz/dmlcz/106585

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SOLVABILITY OF SEMILINEAR EQUATIONS WITH STRONG NONLINEARITIES AND APPLICATIONS TO ELLIPTIC BOUNDARY VALUE PROBLEMS

P.S. MILOJEVIĆ

Abstract

Solvability of two classes of semilinear equations involving strongly nonlinear perturbations of type (M) with respect to two Banach spaces is established. An application to elliptic BV problems is also given.

Key words: Semilinear equations, noncoercive, nonlinear operators of type (M), strong nonlinearities, boundary value problems, elliptic equations.

AMS (MOS) Classification Numbers: $47 \mathrm{H} 05,47 \mathrm{H} 15,35 \mathrm{~J} 60$

1. INTRODUCTION

Many problems in analysis reduce to solving operator equations of the form

$$
\begin{equation*}
\lambda C x-A x-N x=f \tag{1}
\end{equation*}
$$

where f is a given element in a Hilbert space $H, \lambda \in R, A$ is linear, C and N are nonlinear mappings. Motivated by applications to strongly nonlinear elliptic problems, we shall study Eq. (1) in the following setting.
(i) There is a pair $\left\{V, V^{*}\right\}$ of Banach spaces in duality with $V \subset H \subset V^{*}$, i.e., there is a nondegenerate continuous bilinear form $<,>$ on $V \times V^{*}$. (V^{*} need not be the dual of V in the usual sense.) Suppose that V is reflexive and compactly embedded in $H,|<x, y>| \leq\|x\|_{V}\left\|_{y}\right\|_{v}$. on $V \times V^{*}$ and the duality \langle,$\rangle is compatible with the inner product (,)$, i.e., $\langle x, y\rangle=(x, y)$ for $(x, y) \in V \times H$.
(ii) Let $\left\{U, U^{*}\right\}$ be another pair of Banach spaces in duality compatible with (,) such that U is separable, $U \subset V$ and $V^{*} \subset U^{*}$ and the injections are continuous and dense.
(iii) $A: V \rightarrow V^{*}$ is a continuous "variational extension" of a closed linear mapping $A_{1}: D\left(A_{1}\right) \subset H \rightarrow H$ such that $U \subset D\left(A_{1}\right) \subset V$ and $\langle A x, y\rangle=$ $\left(A_{1} x, y\right)$ for $x \in D\left(A_{1}\right)$ and $y \in V$. Moreover, let $C, N: D(N) \subset V \rightarrow U^{*}$ be such that $N-C$ is of type (M) relative to (U, V) with $U \subset D(N)$ and $(N-C)(U) \subset H$ (see Definition 1 below).

Under some additional conditions, we shall prove that Eq. (1) is solvable for each $\lambda \in R$ and each $f \in H$. If a is the quasinorm of C (i.e., $a=$ $\left.\lim \sup _{\|x\| \rightarrow \infty}\|C x\| /\|x\|\right)$ and λ_{1} is the first eigenvalue of A_{1}, then the problem is not coercive when $|\lambda| a \geq \lambda_{1}$.

The above idea of using two pairs of Banach spaces with compatible dualities for studying (locally) coercive operator equations (with fof small norm) is due to Kato [10]. Earlier, Hess [9] has also studied operator equations in a less general setting under a global coercivity condition. One importance of studying operator equations in such a setting lies in the fact that certain differential equations, which have been successfully handled earlier only by the method of Nash-Moser type (cf. Moser [15] and Rabinowitz [16]), reduce to them, and the problem of "loss of derivatives" is not present [10]. Another importance of this setting is demonstrated in the paper by an application to a class of (noncoercive) semilinear elliptic equations with strong nonlinearities (cf. also Hess [9]). Earlier, coercive quasilinear elliptic equations with strong nonlinearities have been studied by many authors using either truncation techniques and/or approximation results of Hedberg's type and generalized degree theories (e.g. $[5,7,8,9,12,17]$).

The second abstract problem we treat is the solvability of

$$
\begin{equation*}
K x-\lambda L x+M x=f, \quad(x \in D(M), \quad f \in H) \tag{2}
\end{equation*}
$$

where $L: H \rightarrow H$ is linear symmetric and compact and $K, M: D(M) \subset H \rightarrow H$ are nonlinear with $K+M$ of type (M) relative to (U, H). It is an extension of the problem studied by Kesavan [11] when $\mathrm{M}: \mathrm{H} \rightarrow \mathrm{H}$ is completely continuous (i.e. $M x_{n} \rightarrow M x$ if $x_{n} \rightarrow x$ (weakly)) and K is the identity.

2. SOLVABILITY OF EQ. (1) WITH $|\lambda| a<\lambda_{1}$

Our basic assumptions on A_{1} and A are:
(3) A_{1} is symmetric and for some positive $c \notin \sigma\left(A_{1}\right)$, the spectrum of $A_{1}, B_{c}=$ $A_{1}+c I$ is positive, i.e., $\left(B_{c} x, x\right)>0$ for $0 \neq x \in D\left(A_{1}\right)$ and $B_{c}^{-1}: H \rightarrow H$ is
compact.
(4) There are constants $c_{1}>0$ and $c_{2} \geq 0$ such that

$$
<A x, x>\geq c_{1}\|x\|_{V}^{2}-c_{2}\|x\|^{2} \text { for all } x \in V
$$

Let $\lambda_{1} \leq \lambda_{2} \leq \ldots, \lambda_{k} \rightarrow \infty$, be the sequence of eigenvalues of A_{1} and $\left\{e_{k}\right\}_{1}^{\infty}$ be the corresponding system of orthonormal eigenvectors complete in U and H. Set $H_{n}=$ lin.sp. $\left\{e_{1}, \ldots . e_{n}\right\}$ and let $P_{n}: H \rightarrow H_{n}$ be the orthogonal projection onto H_{n} for each n. Since $\left\{\mu_{k}=\lambda_{k}+c\right\}$ and $\left\{e_{k}\right\}$ are the eigenvalues and eigenvectors of B_{c}, we have by the variational characterization of $\left\{\mu_{k}\right\}:$
(5) $\left(B_{c} x, x\right) \geq \mu_{1}\|x\|^{2}$ and $\left(B_{c}\left(I-P_{k}\right) x,\left(I-P_{k}\right) x\right) \geq \mu_{k+1}\left\|\left(I-P_{k}\right) x\right\|^{2}$,

$$
\forall x \in D\left(A_{1}\right)
$$

Now we define the class of permissible nonlinearities.

Definition 1. (cf. [9]) Let $U \subset D(N) \subset V$ and $N: D(N) \rightarrow U^{*}$. Then N is said to be of type (M) relative to (U, V) if (i) N is continuous from each finite-dimensional subspace of U into the weak topology of U^{*} and (ii) whenever $\left\{x_{n}\right\} \subset U, x_{n} \rightarrow x$ in $V, N x_{n} \rightarrow y$ in U^{*} with $y \in V^{*}$ and $\left.\lim \sup <N x_{n}, x_{n}\right\rangle \leq\langle y, x\rangle$, then $x \in D(N)$ and $N x=y$. If y in (ii) is given in advance, we say that N is of type (M) at y relative to (U, V).

Recall that $N: D(N) \rightarrow U^{*}$ is quasibounded if, whenever $\left\{x_{n}\right\} \subset U$ is bounded in V and $<N x_{n}, x_{n}>\leq$ const. $\left\|x_{n}\right\|_{V}$, then $\left\{N x_{n}\right\}$ is bounded in U^{*}. We say that C has a linear growth if there are positive constants a, b and ρ such that

$$
\begin{equation*}
\|C x\| \leq a\|x\|+b \quad \text { for all }\|x\| \geq \rho, x \in U \tag{6}
\end{equation*}
$$

Our first result is:

THEOREM 1 (cf. [14]). Let $|\lambda| a<\lambda_{1},(8),(4)$, and (6) hold, $(N-\lambda C)(U) \subset$ $H,(N x, x) \geq 0$ for $x \in U, N$ be guasibounded and $N-\lambda C$ be of type (M) relative to (U, V) and $A: V \rightarrow V^{*}$ be linear and continuous. Then $E q(1)$ is solvable in V for each $f \in H$.

Proof. Let $f \in H$ be fixed and choose an $r \geq \rho$ such that $\|f\|+\lambda \mid b<$ $r\left(\lambda_{1}-\mu \mid a\right)$. Then, for each $x \in \partial B(0, r) \cap H_{n}, n \geq 1$, we have

$$
\begin{gathered}
\left(\lambda P_{n} C x-A_{1} x-P_{n} N x-P_{n} f, x\right)=\left(\lambda C x-A_{1} x-N x-f, x\right) \\
\leq\left(|\lambda| a-\lambda_{1}\right)\|x\|^{2}+(\|f\|+|\lambda| b)\|x\|<0 .
\end{gathered}
$$

Hence, the homotopy $H_{n}(t, x)=t\left(\lambda P_{n} C x-A_{1} x-P_{n} N x-P_{n} f\right)-(1-t) x \neq 0$ on $[0,1] \times \partial B(0, r) \cap H_{n}$, and therefore the Brouwer degree $\operatorname{deg}\left(\lambda P_{n} C-A_{1}-\right.$ $\left.P_{n} N-P_{n} f, B \cap H_{n}, 0\right) \neq 0$ for each $n \geq 1$. Thus, there is an $x_{n} \in B(0, r) \cap H_{n}$ such that $\lambda P_{n} C x_{n}-A_{1} x_{n}-P_{n} N x_{n}=P_{n} f, n \geq 1$. Moreover, (4) implies that

$$
\begin{aligned}
& c_{1}\left\|x_{n}\right\|_{V}^{2}-c_{2}\left\|x_{n}\right\|^{2} \leq\left(A_{1} x_{n}, x_{n}\right) \\
& \leq a|\lambda|\left\|x_{n}\right\|^{2}+\left(!|f \|+|\lambda| b)\left\|x_{n}\right\|\right.
\end{aligned}
$$

and consequently, $\left\{x_{n}\right\}$ is bounded in V. Next,

$$
\begin{gathered}
<N x_{n}, x_{n}>=\left(N x_{n}, x_{n}\right)=\left(P_{n} N x_{n}, x_{n}\right)=\left(\lambda P_{n} C x_{n}-A_{1} x_{n}-P_{n} f, x_{n}\right) \\
\leq a|\lambda|\left\|x_{n}\right\|^{2}+(\|f\|+|\lambda| b)\left\|x_{n}\right\|-<A x_{n}, x_{n}>
\end{gathered}
$$

$\leq a|\lambda|\left\|x_{n}\right\|^{2}+(\|f\|+|\lambda| b)\left\|x_{n}\right\|+\|A\|\left\|x_{n}\right\|_{V}^{2} \leq \mathrm{const} .\left\|x_{n}\right\|_{V}$, and therefore, $\left\{N x_{n}\right\}$ is bounded in U^{*} by the quasiboundedness of N. Thus, we may assume that $x_{n}-x$ in $V, A x_{n}-A x$ and $(N-\lambda C) x_{n}-y$ in U^{*}. Moreover, for each $u \in H_{n},\left\langle(N-\lambda C) x_{n}, u\right\rangle=-\left(A_{1} x_{n}+P_{n} f, u\right)$. Then, for each $u \in \cup_{n \geq 1} H_{n}, u \in H_{k}$ for some k and for each $n \geq k$,

$$
<(N-\lambda C) x_{n}, u>=-<A x_{n}+f, u>\rightarrow-<A x+f, u>.
$$

Since $\overline{U H_{n}}=U$, it follows that $\left\langle(N-\lambda C) x_{n}, u\right\rangle \rightarrow-\langle A x+f, u\rangle$ for each $u \in U$, and therefore $y=-A x-f$. Moreover,

$$
<A x_{n}, x_{n}-x>\geq<A x, x_{n}-x>-c_{2}\left\|x_{n}-x\right\|^{2}
$$

imples that $\langle A x, x\rangle \leq \liminf \left\langle A x_{n}, x_{n}\right\rangle$ and consequently,

$$
\left.\limsup <(N-\lambda C) x_{n}, x_{n}>=\limsup \left[\left(-f, x_{n}\right)-<A x_{n}, x_{n}\right\rangle\right]
$$

$$
\leq-<A x+f, x\rangle
$$

Hence, $x \in D(N)$ and $\lambda C x-A x-N x=f$ by property (M).

Remark 1. When $\lambda=0\left(<\lambda_{1}\right)$, Theorem 1 is a global analogue of the result of T. Kato [10] for mappings of the form $T=A+N$ (compare also with Hess [9]).

3. THE CASE $|\lambda| a \geq \lambda_{1}$

This is a noncoercive case and a major additional difficulty is to show that the set

$$
S_{\lambda}(f)=\left\{x \in H_{n} \mid \lambda P_{n} C x-A_{1} x-P_{n}\left(N_{1}+N_{2}\right) x=P_{n} f, n=1,2, \ldots\right\}
$$

is bounded in H, where now $N=N_{1}+N_{2}: D(N) \subset V \rightarrow U^{*}$.

PROPOSITION 1. Let (8) and (6) hold, N be such that $N_{i}(U) \subset H, i=1,2$, N_{1} be of type (M) at 0 relative to (U, H) and
(7) $\left(N_{i} x, x\right) \geq 0$ for $x \in U, i=1,2$, and $x=0$ if $N_{1} x=0$.
(8) If $\left(N_{1} x_{n}, x_{n}\right) \rightarrow 0$ for some $\left\{x_{n}\right\} \subset U$ bounded in H, then $N_{1} x_{n} \rightarrow 0$ in U^{*}.
(8) There is a $\delta>1$ such that $N_{1}(t x)=t^{\delta} N_{1}(x)$ for all $x \in U, t \geq 0$.
(10) There are positive constants a_{1}, b_{1}, and $\delta_{1}<\delta$ such that

$$
\left\|N_{2} x\right\| \leq a_{1}\|x\|^{\delta_{1}}+b_{1} \text { for all } x \in U \text { with }\|x\| \text { large. }
$$

Then $S_{\lambda}(f)$ is bounded in H for each λ with $\nmid k \geq \lambda_{1}$ and each $f \in H$.

Proof. Let $|\lambda| a \geq \lambda_{1}$ be fixed and suppose that $S_{\lambda}(f)$ is not bounded in H for some $f \in H$. Let $x_{n_{k}} \in S_{\lambda}(f)$ be such that $\left\|x_{n_{k}}\right\| \rightarrow \infty$ as $k \rightarrow \infty$, and set $u_{n}=\frac{x_{n_{k}}}{\left\|x_{n_{k}}\right\|}$. Then

$$
\begin{gather*}
\left(N_{1} u_{n_{k}}, u_{n_{k}}\right)=\frac{1}{\left\|x_{n_{k}}\right\|^{\delta-1}}\left[c\left\|u_{n_{k}}\right\|^{2}\right. \tag{11}\\
\left.-\left(B_{c} u_{n_{k}}, u_{n_{k}}\right)-\left\|x_{n_{k}}\right\|^{-1}\left(\left(N_{2}-\lambda c\right) x_{n_{k}}-f, u_{n_{k}}\right)\right] \rightarrow 0 \text { as } k \rightarrow \infty \\
-739-
\end{gather*}
$$

and $N_{1} u_{n_{k}} \rightarrow 0$ in U^{*} by (8). Since we may assume that $u_{n_{k}} \rightarrow u$ in H, the (M)-property of N_{1} implies that $u \in D\left(N_{1}\right)$ and $N_{1} u=0$. Hence, $u=0$ by (7).

Next, let $\alpha \in(0,1)$ and $\epsilon>0$ small be fixed, $\bar{a}=a+\epsilon$ and $m \geq 1$ be such that $\lambda_{m+1}-|\lambda| \bar{a}>\alpha$ and $\left\|\left(I-P_{m}\right) f\right\| \leq \alpha$. Then, for each $n_{k}>m$ large and fixed, (6) and (7) imply that

$$
\begin{gathered}
\quad(|\lambda| \bar{a}+c)\left(\left\|P_{m} x_{n_{k}}\right\|^{2}+\left\|\left(I-P_{m}\right) x_{n_{k}}\right\|^{2}\right) \geq\left(\left(\lambda P_{n_{k}} C+c\right) x_{n_{k}}, x_{n_{k}}\right) \\
=\left(B_{c} x_{n_{k}}, x_{n_{k}}\right)+\left(P_{n_{k}}\left(N_{1}+N_{2}\right) x_{n_{k}}, x_{n_{k}}\right)+\left(P_{n_{k}} f, x_{n_{k}}\right) \\
\geq\left(B_{c} P_{m} x_{n_{k}}, P_{m} x_{n_{k}}\right)+\left(B_{c}\left(I-P_{m}\right) x_{n_{k}},\left(I-P_{m}\right) x_{n_{k}}\right)+\left(P_{m} f, P_{m} x_{n_{k}}\right) \\
+\left(\left(I-P_{m}\right) f,\left(I-P_{m}\right) x_{n_{k}}\right) \geq \mu_{1}\left\|P_{m} x_{n_{k}}\right\|^{2}+\mu_{m+1}\left\|\left(I-P_{m}\right) x_{n_{k}}\right\|^{2} \\
\quad-\left\|P_{m} f\right\|\left\|P_{m} x_{n_{k}}\right\|-\left\|\left(I-P_{m}\right) f\right\|\left\|\left(I-P_{m}\right) x_{n_{k}}\right\|,
\end{gathered}
$$

or after rearranging,

$$
\begin{gathered}
\left(\lambda_{m+1}-|\lambda| \bar{a}\right)\left\|\left(I-P_{m}\right) x_{n_{k}}\right\|^{2}-\left\|\left(I-P_{m}\right) f\right\|\left\|\left(I-P_{m}\right) x_{n_{k}}\right\| \\
\leq\left(|\lambda| \bar{a}-\lambda_{1}\right)\left\|P_{m} x_{n_{k}}\right\|^{2}+\|f\|\left\|P_{m} x_{n_{k}}\right\|
\end{gathered}
$$

Since $\left\|\left(I-P_{m}\right) f\right\| \leq \alpha$, we get, after dividing by $\left\|x_{n_{k}}\right\|^{2}$,

$$
\begin{gathered}
\left(\lambda_{m+1}-|\lambda| \bar{a}\right)\left\|\left(I-P_{m}\right) u_{n_{k}}\right\|^{2}-\alpha\left\|x_{n_{k}}\right\|^{-1}\left\|\left(I-P_{m}\right) u_{n_{k}}\right\| \\
\leq\left(|\lambda| \bar{a}-\lambda_{1}\right)\left\|P_{m} u_{n_{k}}\right\|^{2}+\left\|x_{n_{k}}\right\|^{-1}\|f\|\left\|P_{m} u_{n_{k}}\right\|
\end{gathered}
$$

or

$$
\begin{gather*}
\left(\lambda_{m+1}-|\lambda| \bar{a}\right)\left\|\left(I-P_{m}\right) u_{n_{k}}\right\|^{2}-\alpha\left\|\left(I-P_{m}\right) u_{n_{k}}\right\| \tag{12}\\
\leq\left(|\lambda| \bar{a}-\lambda_{1}\right)\left\|P_{m} u_{n_{k}}\right\|^{2}+\|f\|\left\|P_{m} u_{n_{k}}\right\|
\end{gather*}
$$

On the other hand, we may assume that $P_{m} u_{n_{k}} \rightarrow v_{0} \in H_{m}$ as $k \rightarrow \infty$ and $\left(I-P_{m}\right) u_{n_{k}} \rightarrow-v_{0} \in H_{m}^{1}$. Hence, $v_{0}=0$ and $N\left(I-P_{m}\right) u_{n_{k}} \| \rightarrow 1$ as $k \rightarrow \infty$ since

$$
1=\left\|u_{n_{k}}\right\|^{2}=\left\|P_{m} u_{n_{k}}\right\|^{2}+\left\|\left(I-P_{m}\right) u_{n_{k}}\right\|^{2}
$$

Finally, passing to the limit in (12) we obtain $\lambda_{m+1}-|\lambda| \bar{a} \leq \alpha$, which contradicts our choices of α and m. Hence, $S_{\lambda}(f)$ is bounded in H for all λ with $|\lambda| a \geq \lambda_{1}$ and $f \in H$.

Our basic result in this case is:

THEOREM 2 (cf. [14]). Let $|\lambda| a \geq \lambda_{1}$, (9)-(4) hold, $N=N_{1}+N_{2}$ be such that $N_{i}(U) \subset H, i=1,2, N_{1}$ be of type (M) at 0 relative to $(U, H), u=0$ if ($\left.N_{1} u, u\right)=0$ and (6)-(10) hold. Suppose that $N: D \rightarrow U^{*}$ is quasibounded, $N-\lambda C$ is of type (M) relative to (U, V) and $A: V \rightarrow V^{*}$ is continuous. Then Eq. (1) is solvable in V for each $f \in H$.

Proof. Let $f \in H$ be fixed. We will show first that each finite dimensional equation in $S_{\lambda}(f)$ is solvable. For each $n \geq 1$, we claim that there is a constant $c_{n}>0$ such that

$$
\begin{equation*}
\left(N_{1} x, x\right) \geq c_{n}\|x\|^{1+\delta} \text { for each } x \in H_{n} . \tag{13}
\end{equation*}
$$

If not, then there is a sequence $\left\{x_{k}\right\} \subset H_{n}$ for some \boldsymbol{n} such that

$$
\left(N_{1} x_{k}, x_{k}\right) \leq \frac{1}{k}\left\|x_{k}\right\|^{1+\delta} \text { for each } k
$$

and, setting $u_{k}=\frac{x_{k}}{\left\|x_{k}\right\|}$, we get

$$
\begin{equation*}
0 \leq\left(N_{1} u_{k}, u_{k}\right) \leq \frac{1}{k} \rightarrow 0 \text { as } k \rightarrow \infty \tag{14}
\end{equation*}
$$

We may assume that $u_{k} \rightarrow u$ in H_{n} and, passing to the limit in (14), we get ($\left.N_{1} u, u\right)=0$. Hence, $u=0$ in contradiction to $\|u\|=1$, and therefore (13) holds for each n and some $c_{\boldsymbol{n}}>0$.

Next, we choose $r_{n} \geq \rho$ such that $\frac{\|\rho\|+|\lambda| b}{r_{n}}<\lambda_{1}-|\lambda| a+c_{n} r_{n}^{\delta-1}$ and note that for each $x \in \partial B\left(0, r_{n}\right) \cap H_{n}$,

$$
\left(\lambda C x-A_{1} x-N_{1} x-N_{2} x-f, x\right) \leq\left(|\lambda| a-\lambda_{1}-c_{n} r_{n}^{\delta-1}+\frac{\|f\|+\lambda \mid \beta}{r_{n}}\right) r_{n}^{2}<0 .
$$

Hence, as before, there is an $x_{n} \in H_{n}$ such that $\lambda C x_{n}-A_{1} x_{n}-P_{n}\left(N_{1}+\right.$ $\left.N_{2}\right) x_{n}=P_{n} f$ for each $n \geq 1$. Moreover, $S_{\lambda}(f)$ is bounded in H by Proposition 1, and is also bounded in V by (4). Finally, the completion of the theorem can be carried out as in Theorem 1.!

4. SOLVABILITY OF EQ. (2)

We assume that $K: D(M) \subset H \rightarrow H$ has a linear growth and is coercive, i.e.,
(15) There are positive constants a, b, c, and $\rho \geq 0$ such that
(i) $\|K x\| \leq a\|x\|+b$ for all $\|x\| \geq \rho$,
(ii) $(K x, x) \geq c\|x\|^{2}$, for all $x \in D(M)$.

Again, the noncoercive case is harder and a result analogous to Proposition 1 holds.

PROPOSITION 2. Let $L: H \rightarrow H$ be a linear, symmetric; positive and compact mapping, Le $e_{k}=\lambda_{k} e_{k}$ for $k \geq 1$ with $\left\{e_{k}\right\} \subset U$ and complete in H, and $\left\{H_{n}, P_{n}\right\}$ as before. Suppose that $M=M_{1}+M_{2}: D(M) \subset H \rightarrow H$ is such that M_{1} is quasibounded and of type (M) at 0 relative to $(U, H), M_{1}$, M_{2}, and K satisfy (7), (9), (10), and (15) on U, respectively. Then, for each $\lambda \geq c \lambda_{1}^{-1}$ and each $f \in H$, the set $S_{\lambda}(f)=\left\{x \in H_{n} \mid P_{n} K x-\lambda L x+P_{n} M x=\right.$ $\left.P_{n} f, n=1,2, \ldots\right\}$ is bounded in H.

Proof. Let $\lambda \geq c \lambda_{1}^{-1}$ be fixed and suppose that $S_{\lambda}(f)$ is not bounded in H for some $f \in H$. Let $x_{n_{k}} \in S_{\lambda}(f)$ be such that $\left\|x_{n_{k}}\right\| \rightarrow \infty$ and $u_{n_{k}}=\frac{x_{n_{k}}}{\left\|x_{n_{k}}\right\|^{\prime}}$. Then, $\left(M_{1} u_{n_{k}}, u_{n_{k}}\right) \rightarrow 0$ as in (11), and therefore $\left\{M_{1} u_{n_{k}}\right\}$ is bounded in H by the quasiboundedness of M_{1}. Thus, we may assume that $u_{n_{k}} \rightarrow u$ and $M_{1} u_{n_{k}}-y$ in H with $y=0$, since L is injective and

$$
L\left(\frac{x_{n_{k}}}{\left\|x_{n_{k}}\right\|^{\delta}}\right)=\lambda^{-1} \frac{P_{n_{k}} K x_{n_{k}}}{\left\|x_{n_{k}}\right\|^{\delta}}-P_{n_{k}} M_{1} u_{n_{k}}-\frac{P_{n_{k}}\left(M_{2} x_{n_{k}}-f\right)}{\left\|x_{n_{k}}\right\|^{\delta}} \rightharpoonup y
$$

Moreover, $M_{1} u=0$ since M_{1} is of type (M) at 0 , and consequently $u=0$.
Next, let $\alpha \in(0,1)$ be fixed and $m \geq 1$ be such that $\left\|\left(I-P_{m}\right) f\right\| \leq \alpha$ and $c-\lambda \lambda_{m+1}>\alpha$. Then, using the variational characterization of the
eigenvalues of L :
$(L x, x) \leq \lambda_{1}\|x\|^{2}$ and $\left(L\left(I-P_{n}\right) x,\left(I-P_{n}\right) x\right) \leq \lambda_{n+1}\left\|\left(I-P_{n}\right) x\right\|^{2}, x \in H$, we obtain, as in the proof of Proposition 1, that for each $n_{k}>m$

$$
\begin{gathered}
\left(c-\lambda \lambda_{m+1}\right)\left\|\left(I-P_{m}\right) u_{n_{k}}\right\|^{2}-\alpha\left\|\left(I-P_{m}\right) u_{n_{k}}\right\| \\
\leq\left(\lambda \lambda_{1}-c\right)\left\|P_{m} u_{n_{k}}\right\|^{2}-\|f\|\left\|P_{m} u_{n_{k}}\right\|
\end{gathered}
$$

Again, $\left\|\left(I-P_{m}\right) u_{n_{k}}\right\| \rightarrow 1$ and $\left\|P_{m} u_{n_{k}}\right\| \rightarrow 0$ as $k \rightarrow \infty$, and therefore passing to the limit in the last inequality we get that $c-\lambda \lambda_{m+1} \leq \alpha$, which contradicts our choices of m and α. Hence, $S_{\lambda}(f)$ is bounded in H.

Our main solvability result for Eq. (2) reads:

THEOREM 3. (cf. [14]) Let $L: H \rightarrow H$ be linear, symmetric, positive, and compact, $\left\{H_{n}, P_{n}\right\}$ be as in Proposition 2, $K, M=M_{1}+M_{2}: D(M) \subset H \rightarrow$ H be such that (15) holds and $K+M$ is of type (M) relative to (U, H). (a) If M is quasibounded and $(M x, x) \geq 0$ for $x \in D(M)$, then Eq. (2) is solvable for each $f \in H$ and each $\lambda<c \lambda_{1}^{-1}$.
(b) If M_{1} is quasibounded and of type (M) at 0 relative to (U, H), M_{1} and M_{2} satisfy (7), (9), and (10) on U, respectively, and $u=0$ if ($\left.M_{1} u, u\right)=0$, then Eq. (2) is solvable for each $f \in H$ and each $\lambda \geq c \lambda_{1}^{-1}$.

Proof. Let $f \in H$ be fixed. We will show first that each equation $P_{n} K x-$ $\lambda L x+P_{n} M x=P_{n} f$ is solvable in H_{n}. Suppose that $\lambda<c \lambda_{1}^{-1}$. If $\lambda>0$, then choosing $r>0$ such that $\|f\|<\left(c-\lambda \lambda_{1}\right) r$, we get that for $x \in B(0, r) \cap H_{n}$,

$$
\left(P_{n} K x-\lambda L x+P_{n} M x-P_{n} f, x\right) \geq\left(c-\lambda \lambda_{1}\right)\|x\|^{2}-\|x\|\|f\|>0 .
$$

If $\lambda<0$, then taking $r>0$ with $\|f\|<c r$, we get that for $x \in B(0, r) \cap H_{n}$

$$
\left(P_{n} K x-\lambda L x+P_{n} M x-P_{n} f, x\right) \geq c\|x\|^{2}-\|f\|\|x\|>0 .
$$

Hence, using the homotopy $H_{n}(t, x)=t\left(P_{n} K x-\lambda L x+P_{n} M x-P_{n} f\right)+(1-t) x$ on $[0,1] \times \bar{B}(0, r) \cap H_{n}$, we get that $\operatorname{deg}\left(P_{n} K-\lambda L+P_{n} M, B \cap H_{n}, P_{n} f\right) \neq 0$
for each $n \geq 1$. Thus, there is an $x_{n} \in B(0, r) \cap H_{n}$ such that $P_{n} K x_{n}-$ $\lambda L x_{n}+P_{n} M x_{n}=P_{n} f$ with $n \geq 1$.

Next, if $\lambda \geq c \lambda_{1}^{-1}$, then (13) holds for M_{1} and each n. Now, we choose $r_{n}>0$ such that $\frac{\|f\|}{r}<c-\lambda \lambda_{1}+c_{n} r_{n}^{\delta-1}$, and note that for $x \in \partial B\left(0, r_{n}\right) \cap H_{n}$

$$
\begin{gathered}
\left(P_{n} K x-\lambda L x+P_{n} M x-P_{n} f, x\right) \\
\geq\left(c-\lambda \lambda_{1}\right)\|x\|^{2}+c_{n}\|x\|^{1+\delta}-\|f\|\|x\|>0 .
\end{gathered}
$$

Hence, as above, $P_{n} K x_{n}-\lambda L x_{n}+P_{n} M x_{n}=P_{n} f$ for some $x_{n} \in B\left(0, r_{n}\right) \cap$ H_{n} and each n, and $\left\{x_{n}\right\}$ is bounded in H by Proposition 2.

Now, since $\left\{x_{n}\right\}$ is bounded in either case, some subsequence $x_{n_{k}}-x$ in H. It remains to show that $K x-\lambda L x+M x=f$. Since M is quasibounded in either case and

$$
\begin{gathered}
\left(M x_{n}, x_{n}\right)=\left(P_{n} M x_{n}, x_{n}\right) \leq-c\left\|x_{n}\right\|^{2}+\lambda\left(L x_{n}, x_{n}\right)+\left(f, x_{n}\right) \\
\leq \text { const. }\left\|x_{n}\right\| .
\end{gathered}
$$

it follows that $\left\{M x_{n}\right\}$ is bounded and a subsequence $(K+M) x_{n_{k}} \rightarrow y$. Moreover,

$$
P_{n_{k}}(K+M) x_{n_{k}}=P_{n_{k}} f+\lambda L x_{n_{k}}-f+\lambda L x=y
$$

and

$$
\lim \sup \left((K+M) x_{n_{k}}, x_{n_{k}}\right) \leq(\lambda L x+f, x)=(y, x) .
$$

Hence, $x \in D(M)$ and $(K+M) x=y$ by property (M), and therefore, $K x-$ $\lambda L x+M x=f$.

Remark 2. Analyzing the above proof we see that $x_{n_{k}} \rightarrow x$ if either $K+M$ is of type $\left(S_{+}\right)$(i.e. $x_{n} \rightarrow x$ if $x_{n}-x$ and $\left.\lim \sup \left((K+M) x_{n}, x_{n}-x\right) \leq 0\right)$, or $K+{ }^{\prime} M$ is compact on H. When M_{1} and M_{2} are completely continuous on H, and $K=I$, Theorem 3 has been proved by Kesavan [11] using different type of arguments.

5. AN APPLICATION

Let $Q \subset R^{n}$ be a bounded domain with the smooth boundary $\partial Q, H=L_{2}(Q)$ and $W_{2}^{k}(Q)$ be the usual real Sobolev space with norm $\|\cdot\|_{k}, k \geq 1$ an integer.

Let $F=F_{1}+F_{2}, G: Q \times R \rightarrow R$ be Carathéodory functions and V be a closed subspace of $W_{2}^{m}(Q)$ containing $\dot{W}_{2}^{m}(Q)$.

In this section we shall establish the weak solvabilty in V of the semilinear elliptic equation

$$
\begin{equation*}
\sum_{|\alpha|,|\beta| \leq m}(-1)^{|\alpha|} D^{\alpha}\left(a_{\alpha \beta}(x) D^{\beta} u(x)\right)+F(x, u(x))-\lambda G(x, u(x))=f(x), \quad x \in Q \tag{16}
\end{equation*}
$$

where the coefficients $a_{\alpha \beta}(x)=a_{\rho \alpha}(x)$ are real valued, smooth and boanded, $f \in L_{2}, \lambda \in R, F$ is strongly nonlinear, and G has linear growth.

We begin by specifying conditions on the linear part.
 V, i.e., there are constants $c_{1}>0$ and $c_{2} \geq 0$ such thet

$$
a(u, u) \geq c_{1}\|u\|_{m}^{2}-c_{2}\|u\|^{2}, \text { for } a \in V .
$$

Using the Lax-Milgram theorem, one can show (see, e.g., [2] that $\boldsymbol{e}(\mathbf{u}, v)$ generates a linear, closed, and densily defined mapping $\boldsymbol{A}_{\mathbf{1}}: D\left(\boldsymbol{A}_{\mathbf{1}}\right) \subset \boldsymbol{L}_{\mathbf{2}} \rightarrow$ L_{2}, with compact resolvent, characterized by $D\left(A_{1}\right)=\{\approx \in V \mid$ for some $h \in$ $L_{2}, a(u, v)=(h, v)$ for all $\left.v \in V\right\} \subset W_{2}^{2 m}$ and $a(u, v)=\left(A_{1} w_{;}^{*} v\right)$ for \in $D\left(A_{1}\right)$ and $v \in V$. Let $\left\{B_{j}\right\}_{1}^{m}$ be boundary differential operators of onders $m_{j} \leq 2 m, 1 \leq j \leq m$, such that the problem

$$
\begin{aligned}
& \sum_{|\alpha|,|A| \leq m}(-1)^{|\alpha|} D^{\alpha}\left(a_{i \beta}(x) D^{\alpha} u\right)=f(x) \text { in } Q \\
& B_{j} u(x)=\sum_{|\alpha| \leq m_{i}} b_{j \in(x)}(x) D^{\alpha} u(x)=0 \text { om } 2 Q
\end{aligned}
$$

is regularly elliptic (cf., e.g., [2]). Set $\widetilde{W_{2}^{2 m}}=\left\{\in \in W_{2}^{2 m}(Q) \mid B_{j} w=\right.$ 0 on $2 Q, j=1, \ldots m\}$. We assume (cf. [11);
(H2) V is such that $D\left(A_{1}\right)=\widetilde{W_{2}^{2 m}}, A_{1}$ is symmetric in L_{2} and peosessess an

Let $H_{n}=$ lin.ap. $\left\{u_{1}, \ldots u_{n}\right\}, W=W_{2}^{H}(Q) \cap \widetilde{W_{2}^{2 m}}$ with $k \geq \max \{1+$ $\left.\left\{\frac{n}{2}\right], 2 m\right\}$ and note that $W \subset C(\bar{Q})$ by the Soboler embeddiag theorem. If
$a_{\alpha \beta}, B_{j \alpha}$ and ∂Q are sufficiently smooth, then $\overline{U H_{n}}=U$ for some closed subspace U of W. Indeed, write $k=2 m+2 r m+s$ for some $r \geq 0$ and $0 \leq s<2 m$, and note that $B_{c}: W_{2}^{2 m+2 i m+s}(Q) \cap \widetilde{W_{2}^{2 m}} \rightarrow W_{2}^{2 i m+\theta}(Q)$ is a homeomorphism for each integer $i \in[0, r]$. Let $i=0$ and note that $\widetilde{U H_{n}}=\widetilde{W_{2}^{e}}$ since $\widetilde{W_{2}^{2 m}}$ is dense in $\widetilde{W_{2}^{s}}$ and $\overline{U H_{n}}=\widetilde{W_{2}^{2 m}}$ (cf. [1]). Since $\widetilde{W_{2}^{e}}$ is a closed subspace of $W_{2}^{s}, U_{0}=B_{c}^{-1}\left(\widetilde{W_{2}^{s}}\right)$ is closed subspace of $W_{2}^{2 m+\theta} \cap \widetilde{W_{2}^{2 m}}$ and $\overline{U H_{n}}=U_{0}$. To see this, let $f \in U_{0}, g=B_{c} f \in \widetilde{W_{2}^{s}}$ and $g_{n} \in H_{n}$ be such that $g_{n} \rightarrow g$ in $\widetilde{W_{2}^{\delta}}$. Then, $B_{c}^{-1} g_{n} \rightarrow f$ in U_{0} with $B_{c}^{-1} g_{n} \in H_{n}$, and therefore $\overline{U H_{n}}=U_{0}$. Next, let $i=1$ and note that $U_{1}=B_{c}^{-1}\left(U_{0}\right)$ is closed in $W_{2}^{4 m+}(Q) \cap \widetilde{W_{2}^{2 m}}$ and $\overline{U H_{n}}=U_{1}$ as above. Proceeding in this way, we get that $U=U_{r}$ is a closed subspace of W with $\overline{U H_{n}}=U$.

Now, denote by $<,>$ the usual duality between V and its dual V^{*} or U and U^{*} and note that $<,>$ is compatible with the inner product (,) on H in either case. Since $a(u,$.$) is a continuous linear functional on V$ for each $u \in V$, it defines a continuous linear mapping $A: V \rightarrow V^{*}$ such that $a(u, v)=\langle A u, v\rangle$ for $u, v \in V$, and $\langle A u, v\rangle=\left(A_{1} u, v\right)$ for $u \in D\left(A_{1}\right), v \in$ V.

Regarding the nonlinear part, we assume:
(F1) $F_{1}(x, 0)=0$ and $F_{1}(x,$.$) is increasing in a neighborhood of 0$ for a.e. $x \in Q$, and for each $s \geq 0$ there is a function $h_{s} \in L_{2}$ such that
$\sup _{|t| \leq s}\left|F_{1}(x, t)\right| \leq h_{s}(x)$ and $F_{1}(x, t) t \geq 0$ for a.e. $x \in Q, t \in R$.
$|t| \leq 。$
(F2) $\left|F_{2}(x, t)\right| \leq a(x)+b(x)|t|$ for $a . e . x \in Q, t \in R$ and some $a, b \in L_{2}$.
(Fs) $s=0$ if $F_{1}(x, s)=0$ for some $x \in Q$, and $F_{1}(x, s t)=s^{\delta} F_{1}(x, t)$ for a.e. $x \in Q, t \in R, s \geq 0$ and some $\delta>1$.
(G1) $|G(x, t)| \leq c(x)+d(x)|t|$ for a.e. $x \in Q, t \in R$ and some $c, d \in L_{2}$.
Let $D\left(N_{1}\right)=\left\{u \in V \mid F_{1}(x, u)\right.$ and $F_{1}(x, u) u$ are in $\left.L_{1}\right\}$, and $C, N=$ $N_{1}+N_{2}: D\left(N_{1}\right) \rightarrow U^{*}$ be defined by $\langle C u, v\rangle=(G(x, u), v)$ and $<N_{1} u+$ $N_{2} u, v>=\left(F_{1}(x, u)+F_{2}(x, u), v\right)$ for $u \in D\left(N_{1}\right)$ and $v \in U$. By (F1), $U \subset D\left(N_{1}\right), N$ is well defined and $N(U) \subset H$. Moreover, (6) holds for some constants a and b, by (G1).

PROPOSITION 3. (a) If (F1) holds, then $N_{1}: D\left(N_{1}\right) \rightarrow U^{*}$ is of type (M) at 0 relative to $\left(U, L_{2}\right)$ and (8) holds.
(b) If (F1), (F2), and (G1) hold, then $N: D\left(N_{1}\right) \rightarrow U^{*}$ is quasibounded and $N-\lambda C$ is of type (M) relative to (U, V).

Proof. (a) Suppose that $\left\{u_{n}\right\} \subset U, u_{n} \rightharpoonup u$ in $L_{2}, N_{1} u_{n}-0$ in U^{*} and $\lim \sup \left(N_{1} u_{n}, u_{n}\right) \leq 0$. Then Fatou's lemma and (F1) imply that ($N_{1} u_{n}, u_{n}$) $\rightarrow 0$, and therefore we may assume that $F_{1}\left(x, u_{n}(x)\right) u_{n}(x) \rightarrow 0$ a.e. in Q. Since $F_{1}(x, t) t$ is also increasing in t in a neighborhood of zero for a.e. $x \in Q$, it follows that $u_{n}(x) \rightarrow 0$ a.e. in Q. To show that $u_{n} \rightarrow 0$ in L_{1}, let $\epsilon>0$ be fixed and, for any $n \geq 1$, define $Q_{1}=\left\{x \in Q \| u_{n}(x) \left\lvert\, \leq \frac{1}{\epsilon}\right.\right\}$ and $Q_{2}=Q \backslash Q_{1}$. Then, for any measurable subset $A \subset Q$,

$$
\int_{A}\left|u_{n}(x)\right| d x \leq \int_{A \cap Q_{1}}\left|u_{n}(x)\right| d x+\epsilon \int_{A \cap Q_{2}} u_{n}^{2}(x) d x \leq \frac{m(A)}{\epsilon}+\text { const. } \epsilon .
$$

Hence, $u_{n} \rightarrow 0$ in L_{1} by Vitali's theorem, and $u=0$ with $N_{1} 0=0$ since $u_{n}-u$ in L_{1}.

To see that (8) holds, let $\left\{u_{n}\right\} \subset U$ be bounded in L_{2} and $\left(N_{1} u_{n}, u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. We get, as above, that $u_{n}-u$ in $L_{2}, u_{n} \rightarrow 0$ in L_{1} and therefore $u=0$. On the other hand, for any $\epsilon>0$,

$$
\begin{equation*}
\left|F_{1}\left(x, u_{n}(x)\right)\right| \leq \sup _{|t| \leq \frac{1}{2}}\left|F_{1}(x, t)\right|+\epsilon F_{1}\left(x, u_{n}(x)\right) u_{n}(x) \tag{17}
\end{equation*}
$$

and, for any measurable subset $A \subset Q$,

$$
\int_{A}\left|F_{1}\left(x, u_{n}(x)\right)\right| d x<\left\|h_{\frac{1}{2}}\right\|_{L_{1}(A)}+\text { const. } \epsilon .
$$

Hence, by Vitali's theorem, $F_{1}\left(., u_{n}\right) \rightarrow F_{1}(., u)=0$ in L_{1}, and therefore $N_{1} u_{n} \longrightarrow 0$ in U^{*}.
(b) Note first that $C, N_{2}: V \rightarrow L_{2}$ are completely continuous since V is compactly embedded in L_{2}. Let $i: U \rightarrow V$ be the natural injection. Next, let $\left\{u_{n}\right\} \subset U, u_{n} \rightharpoonup u$ in $V,(N-\lambda C) u_{n} \rightharpoonup i^{*} v$ in U^{*} for some $v \in V^{*}$ and $\left.\lim \sup <(N-\lambda C) u_{n}, u_{n}\right\rangle \leq\langle v, u\rangle$. Hence, in view of (17), Vitali's theorem and Fatou's lemma imply that $F_{1}\left(., u_{n}\right) \rightarrow F_{1}(., u)$ in L_{1} and

$$
\int_{Q} F_{1}(x, u) u d x \leq \liminf \int_{Q} F_{1}\left(x, u_{n}\right) u_{n} d x \leq \text { const. }
$$

Thus, $u \in D\left(N_{1}\right), N_{1} u_{n} \rightarrow N_{1} u$ in U^{*} and $(N-\lambda C) u_{n}=N_{1} u_{n}+N_{2} u_{n}-$ $\lambda C u_{n} \rightarrow N_{1} u+N_{2} u-\lambda C u=(N-\lambda C) u=i^{*} v$, proving that $(N-\lambda C):$ $D\left(N_{1}\right) \rightarrow U^{*}$ is of type (M) relative to (U, V). Moreover, using (17) as above, we see that N_{1} is quasibounded and therefore such is $N=N_{1}+N_{2}$ by the boundedness of N_{2}.

Now, let $\lambda \in R$ and $f \in L_{2}$. We are looking for a solution u of the following variational problem:

$$
\left\{\begin{array}{l}
a(u, v)+\int_{Q} F(x, u) v d x-\lambda \int_{Q} G(x, u) v d x=(f, v) \forall v \in W_{2}^{k} \cap V \tag{18}\\
u \in D\left(N_{1}\right) \subset W_{2}^{m}
\end{array}\right.
$$

which can be considered as weak formulation of Eq. (16). We have:

THEOREM 4. Let $a_{\alpha \beta}, b_{j \alpha}$ and ∂Q be sufficiently smooth, (H1), (H2), (F1), (F2), and (G1) hold. Then BVP (18) has a solution for each $|\lambda| a<\lambda_{1}$ and each $f \in L_{2}$. If, in addition, (Fg) holds, then the same conclusion is also valid for $|\lambda| a \geq \lambda_{1}$.

Proof. Let $i: U \rightarrow V$ be the natural injection and $i^{*}: V^{*} \rightarrow U^{*}$ be its dual mapping. Define a bilinear form on $V \times i^{*}\left(V^{*}\right)$ by $\left\langle u, i^{*} v\right\rangle=\langle u, v\rangle$ for $u \in V, v \in V^{*}$, and note that $\left\langle i^{*} A u, v\right\rangle=\langle A u, v\rangle$ for $u, v \in V$. Since BVP (18) is equivalent to the operator equation $\lambda i^{*} C u-i^{*} A u-N u=-i^{*} f$, the conclusions of the theorem follow, in view of Proposition 3, from Theorems 1 and 2 with $V^{*}, \lambda C-A$ and f replaced by $i^{*}\left(V^{*}\right), i^{*}(\lambda C-A)$ and $i^{*} f$, respectively.

For the sake of comparison, cons the BVP

$$
\left\{\begin{array}{l}
-\Delta u= \pm|u|^{p-1} u+\lambda u+f \text { in } Q \subset R^{n} \\
u=0 \text { on } \partial Q .
\end{array}\right.
$$

Theorem 4 implies that BVP (19_) has a weak solution for each $\lambda \in R, f \in L_{2}$ and $p>1$. However, the situation is quite different for BVP (19+) and has been studied by many authors. Many exsistence results on positive solutions of (19+) with $p<\frac{n+2}{n-2}$ are known (see the review article by P.L. Lions [13] and
the references in there). In the critical case, when $p=\frac{n+2}{n-2}$, Brezis-Nirenberg [6] have shown that BVP (19+), with $f=0$, has a positive solution only for $\lambda \in\left(0, \lambda_{1}\right)$ provided $n \geq 4$ and Q is starshaped. If, in addition, Q is not contractable and $n \geq 3$, Bahri-Coron [3] have established this fact also for $\lambda=0$ (using the methods of algebraic topology). For the exsistence of infinitely many solutions of (19+) with $\lambda=0$, we refer to Bahri-Lions [4] and the references therein.

Remark 9. When $1<p<\frac{n+2}{n-2}(p>1$ if $n \leq 2)$, the weak solvability of (19_) was proved by Kesavan [11] using different methods. When $\boldsymbol{F}_{\mathbf{2}}=0, \lambda=0$ and A is coercive, Theorem 4 is contained in Hess [9] with $m=1$, and in Webb [17] and Brezis-Browder [5] (under an additional condition on F) with $m>1$. For an oplication of Theorem 3, with $M: H \rightarrow H$ completely continuous, to the Vou Kármán Equations, we refer to [11].

The author would like to thank the referee for pointing out some inaccuracies in the paper.

References

[1] S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure App. Math., 15(1962), 119-147.
[2] S. Agmon, Lectures on Elliptic Boundary Value Problems, Princeton, NJ, Van Nostrand, 1965.
[3] A. Bahri and J.M. Coron, Sur une équation elliptique nonlinéaire avec l'exposant critique de Sobolev, C.R. Acad. Sc. Paris, t. 301, Serie I, (1985), 345-348.
[4] A. Bahri and P.L. Lions, Remarques sur la théorie variationnelle des points critiques et applications, C.R. Acad. Sc. Paris, t. 301, Serie I, (1985), 145-147.
[5] H. Brezis and F.E. Browder, Some properties of higher order Sobolev spaces, J. Math. Pures Appl., 61(1982), 245-259.
[6] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36(1983), 437-477.
[7] F.E. Browder, Exsistence theory for boundary-value problems for quasilinear elliptic systems with strongly nonlinear lower order terms, Proc. Symp. Pure Math., 23(1971), 269-286, AMS, Providence, 1973.
[8] F.E. Browder, Degree of mapping for nonlinear mappings of monotone
type, Proc. Nat. Acad. Sci. USA, 180(1983), 2408-2409.
[9] P. Hess, On nonlinear mappings of monotone type with respect to two Banach spaces, J. Math. Pures Appl., 52(1973), 13-16.
[10] T. Kato, Locally coercive nonlinear equations with applications to some periodic solutions, Duke Math. J., 51(1984), 923-936.
[11] S. Kesavan, Existence of solutions by the Galerkin method for a class of nonlinear problems, Applicable Anal., 16(1983), 279-290.
[12] R. Landes and V. Mustonen, Boundary value problems of strongly nonlinear second order elliptic equations, Bollettino U.M.I., (6) 4-B (1985), 33-55.
[13] P.L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Review, 24(1982), 441-467.
[14] P.S. Milojević, Solvability of some semilinear equations with strong nonlin-earities-I, II Abstracts AMS, 85T-47-16, (January 1985); 85T-47-264 (October 1985).
[15] J. Moser, A rapidly convergent iteration method and non-linear partial differential equations-I, Ann. Scouola Normale Supp. Pisa, 20(1966), 265-315.
[16] P.H. Rabinowitz, A rapid convergence method for a singular perturbation problem, Ann. Inst. Henri Poincaré, Analyse nonlinéaire, 1(1984), 1-17.
[17] J.R.L. Webb, Boundary value problems of strongly nonlinear elliptic equations, J. London Math. Soc., (2) 21(1980), 123-132.

Department of Mathematics, New Jersey Institute of Technology, Newark, New Jersey 07102 USA
(Oblatum 6.6. 1986, revisum 10.8. 1987)

