Evelyn Nelson; Jiří Adámek; Andreas Jung; Jan Reiterman; Andrzej Tarlecki Comparison of subset systems

Commentationes Mathematicae Universitatis Carolinae, Vol. 29 (1988), No. 1, 169--177

Persistent URL: http://dml.cz/dmlcz/106607

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 29,1 (1988)

COMPARISON OF SUBSET SYSTEMS

E. NELSON, J. ADÁMEK, A. JUNG, J. REITERMAN, A. TARLECKI

<u>Abstract:</u> A subset system, as introduced by [ADJ], is a means for expressing a type of (join-)completeness of posets and (join-)continuity of order-preserving maps. We compare subset systems, and we prove, essentially, that the corresponding types of completeness coincide iff the corresponding types of continuity do. We show how this relates to absolutely free completions of posets (for which a new description is also presented), and as a by-product we exhibit a simplified proof of the result of J. Meseguer that each subset system is equivalent to a union-complete one.

Key words: Subset system, complete poset.

Classification: 06A23

0. Preliminaries. Recall that a subset system **Z** is a rule assigning to each poset P a collection Z(P) of subsets of P in such a way that 1. order-preserving maps preserve Z-sets (i.e., if $f:P \rightarrow Q$ is order-preserving, then $M \in Z(P)$ implies $f(M) \in Z(Q)$) and 2. if $\emptyset \in Z(P)$ for some P then $\emptyset \in Z(\emptyset)$. A poset P which has joins of all sets in Z(P) is said to be Z-complete. An order-preserving map $f:P \rightarrow Q$ (not necessarily between Z-complete posets) is Z-continuous if it preserves all existing joins of sets in Z(P).

Examples: 1. S_n is the subset system of all non-empty subsets of cardinality smaller than n. (S_{ω} complete posets are precisely the upper-semilattices, and S_{ω} -continuous maps are those preserving all existing finite, non-empty joins.)

2. ω is the subset system of all increasing ω -chains and all finite chains and C is the subset system of all ω chains.

3. 🛆 is the subset system of all directed sets.

4. Δ_{ω} is the subset system of all countably directed sets, i.e., those sets in which every countable subset has an upper bound.

5. Analogously, $\textbf{C}_{\boldsymbol{\omega}}$ is the subset system of all countably directed chains.

6. For each subset system Z, Z^{C} is the subset system of conditional Z-completeness, i.e. $X \in Z^{C}(P)$ iff $X \in Z(P)$ and X has an upper bound in P.

A subset system Z is <u>absolute</u> if for each subposet A of a poset P, Ae $\in Z(P)$ implies $A \in Z(A)$. For example ω is absolute, whereas the subset system ω^{C} of all bounded ω -chains and finite chains is non-absolute. Further, a subset system Z is <u>conditional</u> if $Z=Z^{C}$, that is, for every poset P, every Z-set in P has an upper bound in P. Finally, a subset system Z is <u>normal</u> if for every poset P, $X \in Z(P)$ implies $X \in Z(X^{T})$, where X^{T} is X with a new top element T added.

For each poset P, we denote by J(P) the lattice of all ideals (= downsets) in P, ordered by inclusion. Let $e:P \rightarrow J(P)$ be the principal-ideal embedding, i.e. $e(P)= \{q \in P | q \leq p\}$. We denote by $Z^{\#}P$ the Zclosure of e(P) in J(P), i.e., the least subposet X of J(P) containing e(P) and such that $M \in Z(X)$ implies $UM \in X$. Then $Z^{\#}P$ is clearly Z-complete. As proved in [AN], $Z^{\#}P$ is the <u>absolutely free</u> Z-completion of P, i.e., the principal-ideal embedding $P \rightarrow Z^{\#}P$ has the universal property that each order-preserving map $f:P \rightarrow Q$ with Q Z-complete has a unique Z-continuous extension $Z^{\#}f:Z^{\#}P \rightarrow Q$.

A subset M of a poset P is said to be Z<u>-closed</u> if for each $X \in Z(P)$ with $X \subseteq M$ and with a join VX in P we have $VX \in M$.

Given subset systems Z_1 and Z_2 , we write $Z_1 \leq Z_2$ if each Z_2 -complete poset is Z_1 -complete, and each Z_2 -continuous map between Z_2 -complete posets is Z_1 -continuous. (Note that this is trivially true if, for each poset P, $Z_1(P) \leq Z_2(P)$.) In other words,

$$Z_1 \leq Z_2$$
 iff Z_2 -Pos $\subseteq Z_1$ -Pos

where Z-Pos is the category of Z-complete posets and Z-continuous maps. If $Z_1 \leq Z_2 \leq Z_1$, we say that Z_1 and Z_2 are <u>equivalent</u>. For example $\omega^C \leq \omega \leq S_{\omega_1}$, and S_{ω} is equivalent to S_3 . Moreover, as it is well known, Δ and C are equivalent by Iwamura's Lemma [I]. On the other hand, Δ_{ω} and C_{ω} are not equivalent:

Example: A poset P which is C_{ω} -complete but not Δ_{ω} -complete. Let $\overline{P} = \prod_{\substack{n \\ n \neq n \leq \omega}} (\omega_n + 1)$ with the componentwise order, and let $P = \{f \in \overline{P} | f(n) = \omega_n \text{ for } c \neq n \leq \omega_n\}$ for at most finitely many a^3 . Further, let

at most finitely many n**}**. Further, let

 $D=\{f\in \overline{P}|f(n)\neq \omega_n \text{ for all } n\geq 1\}.$

We will show that D is a countably-directed subset of P. Since D has no upper bound at all in P, this will establish that P is not Δ_{ω} -complete. For any countable subset XcD, consider, for each n $\epsilon \omega$, n $\neq 0$, the set

{f(n)|f $\in X$ }. The latter is a countable subset of ω_n , and hence has an upper bound, say x_n , in ω_n . Define $g(n)=x_n$ for all $n \ge 1$, then g is an upper bound of X in D and hence D is countably-directed.

Next we prove that P is C_{ω} -complete. Let Γ be a chain in P with no countable cofinal subset. Let $g \in \vec{P}$ be the join of Γ in \vec{P} ; it is enough to prove $g \in P$. If not, then $g(n) = \omega_n$ for infinitely many n. For each such n, we have $\omega_n = (V \cap)(n) = \bigvee_{\substack{i \in \Gamma}} f(n)$ and hence either there exists $f \in \Gamma$ with $f(n) = \omega_n$ or Γ has a cofinal subset of order type ω_n . However, the latter cannot happen for two different natural numbers n, and hence there are infinitely many n $\epsilon \omega$ for which there exists $f_n \in \Gamma$ with $f_n(n) = \omega_n$. Let $Y \leq \omega$ consist of all such n, and for each $n \in Y$ take $f_n \in \Gamma$ with $f_n(n) = \omega_n$. Then the set $\{f_n \mid n \in Y\}$ is not cofinal in Γ (since Γ has no countable cofinal subset) and hence has an upper bound, say h, in Γ . But then $h(n) = \omega_n$ for all $n \in Y$, so $h \notin P$, a contradiction. This shows that P is C_{ω} -complete.

1. Completeness versus continuity. In this section, we consider the relationship of the condition $Z_2 \in Z_1$ with the ostensibly weaker condition that every Z_1 -complete poset is Z_2 -complete.

Theorem 1: For any subset systems Z_1 and $Z_2, Z_2 \in Z_1$ iff every Z_1 complete poset is Z_2 -complete.

Proof. Assume that every Z_1 -complete poset is Z_2 -complete. Let $f:P \rightarrow Q$ be a Z_1 -continuous map with P Z_1 -complete. Given $A \in Z_2(P)$ with p=VA, we shall prove that f(p)=Vf(A). Assuming the contrary, there exists an upper bound $q \in Q$ of f(A) with $f(p) \notin q$ - we shall derive a contradiction.

Since f is Z₁-continuous, the set M= { $x \in P | x \neq p$ and $f(x) \neq q$ } is Z₁-closed in P. Define a poset P* by adding a decreasing ω -chain $d_0 > d_1 > d_2 \dots$ to P in such a way that for $x \in P$, $i < \omega$, we have:

and

Let us verify that P* is Z_1 -complete. The map $h:P^* \rightarrow P$ defined by $h(d_i)=p$ (i < ω) and h(x)=x (x $\in P$) is order-preserving. Thus, given $B \in Z_1(P^*)$, we have $h(P) \in Z_1(P)$. Put

then b is an upper bound of B in P* since $h(y) \ge y$ for all $y \in P^*$. Either b= =VB, or B has the upper bound d_i for some i. In the latter case there are two

possibilities:

(i) $B \cap \{d_j\}_{j < \omega} \neq \phi$ and then $d_j = VB$ for a suitable $j < \omega$, or

(ii) BGM, in which case h(B)=B and hence BGZ₁(P); since M is Z₁-clossed in P, it follows that bGM and then b=VB in P* .

By assumption, it follows that P^* is Z_2 -complete. However, the set $A \in Z_2(P^*)$ fails to have a join in P^* , due to the decreasing chain of upper bounds d_i - a contradiction. \Box

Remark. In the above proof, we actually proved that $COMPL(Z_1, Z_2) \implies CONT((Z_1, Z_2))$. This is stronger than the nontrivial implication above.

Theorem 2. For any subset system Z_1 and Z_2 , $COMPL(Z_1, Z_2^C) \iff CONT(Z_1, Z_2) \iff CLOSED(Z_1, Z_2).$

Proof. COMPL $(Z_1, Z_2^c) \implies$ CONT (Z_1, Z_2) has exactly the same proof as Theorem 1; the set A considered there has an upper bound in P*, and hence belongs to $Z_2^c(P^*)$ but fails to have a join in P*.

 $CONT(\mathbf{Z}_1, \mathbf{Z}_2) \Rightarrow CLOSED(\mathbf{Z}_1, \mathbf{Z}_2): \text{ For each } \mathbf{Z}_1 \text{-closed ideal A in a } \mathbf{Z}_1 \text{-complete}$ poset P define a map

 $f:P \longrightarrow \{0,1\}$ (0<1), by f(x)=0 iff $x \in A$.

Since A is an ideal, f is order-preserving, and since A is Z_1 -closed, f is Z_1 -continuous. Consequently, f is Z_2 -continuous; in other words, A is Z_2 -closed.

 $\begin{array}{l} {\rm CLOSED}(Z_1,Z_2) \Longrightarrow {\rm COMPL}(Z_1,Z_2^C); \mbox{ Let } P \mbox{ be a } Z_1\mbox{-complete poset, and suppose} \\ {\rm A}\, \&\, Z_2^C(P) \mbox{ suppose} \mbox{ that } A \mbox{ has no join in } P. \mbox{ Since } A\, \&\, Z_2^C(P), \mbox{ we know } A\, \&\, Z_2(P) \mbox{ and } A \mbox{ has no upper bound, } a, \mbox{ in } P. \mbox{ Let } \overline{A} \mbox{ be the smallest } Z_1\mbox{-closed ideal of } P \mbox{ containing } A. \mbox{ Then } a \mbox{ is an upper bound of } \overline{A} \mbox{ in } P, \mbox{ but } \overline{A} \mbox{ has no upper bound in } \overline{A}. \mbox{ (since this would be the join of } A \mbox{ in } P). \mbox{ In fact, } A \mbox{ has no upper bound in } \overline{A}. \end{array}$

We shall verify that \overline{A} is Z_1 -closed in the (obviously Z_1 -complete) subset B= $\overline{A} \cup \{a\}$ of P: given X $\in Z_2(B)$ with X $\subseteq \overline{A}$ and x=VX in P, since X $\in Z_2(P)$ and \overline{A} is Z_1 -closed, and therefore Z_2 -closed, in P, we conclude that x $\in \overline{A}$ and

- 172 -

hence x is the join of X in B, too. By the hypothesis, \overline{A} is Z_2 -closed in B. However, the map P \longrightarrow B which maps B identically and maps all other elements of P to a, is order-preserving, hence $A \in Z_2(B)$. Now, a is the join of A in B, and hence \overline{A} is not Z_2 -closed in B, a contradiction.

This completes the proof of Theorem 2.

Remark: The condition CONT(Z_1, Z_2) does not, in general, imply COMPL(Z_1, Z_2): consider $Z_1 = \omega^c$, and $Z_2 = \omega$. Every ω^c -continuous map is ω continuous, and hence CONT(Z_1, Z_2) is true, whereas COMPL(Z_1, Z_2) is false. These conditions are equivalent under additional hypotheses:

Theorem 3: For subset systems Z_1 and Z_2 , if either Z_1 is absolute or Z_2 is conditional then

$$Z_{2} \leq Z_{1} \iff COMPL(Z_{1}, Z_{2}) \iff CONT(Z_{1}, Z_{2}).$$

Proof. It is only necessary to prove that $CONT(Z_1,Z_2) \rightarrow COMP_{-}(Z_1,Z_2)$. For the case Z_2 is conditional, this follows from Theorem 2. So, assume Z_1 is absolute, and let P be a Z_1 -complete poset. Assuming that there is a set A ϵ $\epsilon Z_2(P)$ which does not have a join in P, we shall derive a contradiction. Let \overline{A} denote the least Z_1 -closed ideal of P containing A. Then \overline{A} does not have a largest element (since this would clearly be the join of A). Let \overline{A}^T be the extension of \overline{A} by a largest element I: the absoluteness of Z_1 guarantees that \overline{A}^T is Z_1 -complete. Further, let \overline{A}^{TS} be an extension of \overline{A} by an element S<T which is an upper bound of \overline{A} . The absoluteness of Z_1 guarantees that the inclusion map e: $\overline{A}^T \rightarrow \overline{A}^{TS}$ is Z_1 -continuous: if a Z_1 -set B of \overline{A}^T contains T, then T=VB, and if T ϵ B then VB $\epsilon \overline{A}$ (because B $\epsilon Z_1(\overline{A})$), and in both cases, e(VB) = = V e(B). Consequently, e is Z_2 -continuous. Nevertheless, VA=T in \overline{A}^T , whereas Ve(A)=S in \overline{A}^{TS} - a contradiction to $A\epsilon Z_2(\overline{A}^T)$ [use f: $P \rightarrow \overline{A}^T$, f/a=id, f/P-A = T].

Remark. The following condition strengthens $CLOSED(Z_1, Z_2)$ above.

 $\begin{array}{l} \text{CLOSED}^{\bigstar}(\mathsf{Z}_1,\mathsf{Z}_2)\colon \mathsf{Z}_1\text{-closed sets are }\mathsf{Z}_2\text{-closed (in each }\mathsf{Z}_1\text{-complete poset)}.\\ \text{These two conditions are equivalent, whenever }\mathsf{Z}_2 \text{ is normal. (Recall that every subset system is equivalent to a normal one, [ANR].) To see this, assume \\ \text{CLOSED}(\mathsf{Z}_1,\mathsf{Z}_2), \text{ and let us prove } \text{CLOSED}^{\bigstar}(\mathsf{Z}_1,\mathsf{Z}_2). \text{ Let }\mathsf{P} \text{ be a }\mathsf{Z}_1\text{-complete poset.} \text{ For each }\mathsf{Z}_1\text{-closed set }\mathsf{A} \subseteq \mathsf{P} \text{ and each }\mathsf{B} \in \mathsf{Z}_2(\mathsf{P}) \text{ with join } \mathsf{b} \text{-}\mathsf{VB} \text{ in }\mathsf{P} \text{ we prove that }\mathsf{B} \subseteq \mathsf{A} \text{ implies }\mathsf{b} \in \mathsf{A} \text{ as follows. Let } \mathbb{B} = \{\mathsf{x} \in \mathsf{A} | \mathsf{x} \neq \mathsf{b}\} \cup \{\mathsf{b}\}. \text{ Then } \mathbb{B} \text{ is clearly a }\mathsf{Z}_1\text{-complete poset, and } \mathbb{B} \cap \mathsf{A} \text{ is a }\mathsf{Z}_1\text{-closed ideal of } \mathbb{B}. \text{ Consequent-ly, } \mathbb{B} \cap \mathsf{A} \text{ is }\mathsf{Z}_2\text{-closed in } \mathbb{B}. \text{ Since } \mathsf{Z}_2 \text{ is normal, we have } \mathsf{B} \in \mathsf{Z}_2(\mathbb{B}) \text{ and } \mathbb{B} \subseteq \mathbb{B} \cap \mathsf{A}. \text{ Thus, } \mathsf{b} \in \mathsf{A}. \end{array}$

On the other hand, if Z_2 is not normal, CLOSED(Z_1, Z_2) need not imply CLOSED*(Z_1, Z_2): Consider the subset system Z_1 of all subsets having a least element, and Z_2 of all subsets having a lower bound. It is obvious that Z_1 is equivalent to Z_2 . However, in the 4-point Boolean algebra {0,1,a, π } the Z_1 -closed set {a, π } is not Z_2 -closed.

Example 1. The assumption that the domain be Z_1 -complete in the above condition CONT(Z_1, Z_2) is essential. Consider the absolute, equivalent subset systems S_3 and S_{ω} . There is an S_3 -continuous map which is not S_{ω} -continuous: consider the following poset P

The map $f:P \longrightarrow P$ defined by f(x)=x for all $x \neq d$, f(d)=T, is not S_{ab} -continuous because it does not preserve the join $V \{a,b,c\} = d$; however, f is S_3 -continuous (by default).

This shows that the above $CONT(Z_1, Z_2)$ is not equivalent to the following (more natural) condition:

 $CONT(Z_1, Z_2)^{\ddagger}$: every Z_1 -continuous map between arbitrary posets is Z_2 -continuous

Consider furthermore the following conditions:

 $\begin{array}{l} {\tt CLOSED(Z_1,Z_2)^{\bigstar}: every \ Z_1-closed \ ideal \ in \ any \ poset \ is \ Z_2-closed,} \\ {\tt CLOSED^{\bigstar}(Z_1,Z_2)^{\bigstar}: every \ Z_1-closed \ subset \ of \ any \ poset \ is \ Z_2-closed.} \end{array}$

For all Z_1, Z_2 , $CONT(Z_1, Z_2)^{\#} \iff CLOSED(Z_1, Z_2)^{\#}$, and for Z_2 normal, these are equivalent to $CLOSED^{\#}(Z_1, Z_2)^{\#}$; the proof is like that of Theorem 1.

2. Saturated subset systems

Definition. The <u>saturation</u> of a subset system Z is the following subset system \hat{Z} : For each poset P,

 $M \in \hat{Z}(P)$ iff for each order-preserving map $h:P \longrightarrow Q$, if Q is Z-complete then Vh(M) exists.

A subset system Z is <u>saturated</u> if Z=2.

Corollary 1. Each subset system is equivalent to its saturation.

In fact, Z-completeness and \hat{Z} -completeness are clearly equivalent, and hence, Theorem 1 can be applied.

Observe that \hat{Z} is the largest subset system, under inclusion, equivalent to Z (where the inclusion $Z_1 \subseteq Z_2$ means that $Z_1(P) \subseteq Z_2(P)$ for each poset P). Also, for subset systems Z_4 and Z_2 ,

$$Z_1 \leq Z_2$$
 iff $\hat{Z}_1 \leq \hat{Z}_2$.

Examples: 1. \varDelta is saturated, and moreover, is the saturation of C.

2. ${\bf S}_\omega$ is not saturated; ${\bf \hat{S}}_\omega$ consists of those sets that have a finite cofinal subset.

Proposition 1. For a saturated subset system Z,

Z[#] P=J(P) ∧ Z(P),

i.e. , the Z-closure in J(P) of the set of principal ideals consists of all ideal Z-sets in P.

Proof. Since Z is saturated, all principal ideals are clearly Z-sets, and hence, the set $X=J(P) \cap Z(P)$ contains e(P). We shall prove that $M \in Z(X)$ implies $U M \in Z(P)$. (It is then clear that X is the least subset of J(P) with the above properties.) Thus, we are to show that Vh(UM) exists in each Z-complete poset Q for each order-preserving map $h:P \longrightarrow Q$. Define a map

 $h': J(P) \land Z(P) \longrightarrow Q$, by h'(I) = Vh(I) for $I \in J(P) \land Z(P)$.

Since h is clearly order-preserving, we have h (M) ϵ Z(Q). Thus, the set h (M) has a join. Obviously,

$$V h'(M) = \bigvee_{I \in M} Vh(I) = Vh(UM).$$

Remark. Recall [ADJ] that a subset system is called union complete iff for $J_Z(P)$ = all Z-generated ideals in P, if $M \in Z(J_Z(P))$ then $UM \in J_Z(P)$. If Z is saturated then $J_Z(P)=J(P) \cap Z(P)$, and the above proof actually verifies that every saturated subset system is union-complete. Together with Corollary 1 this yields the following result, proved (much more technically) by J. Meseguer [M]: Each subset system is equivalent to a union-complete subset system.

Note that union complete does not imply saturated: $Z=S_{\omega}$ is a counterexample. It does imply if Z fulfils (M \subseteq P, N \in ZP cofinal in \downarrow M) \Longrightarrow M \in ZP.

In our opinion, the role that union-completeness was intended to play, that is, to obtain a description of free Z-completions via ideals, can be accomplished more naturally using the concept of saturation.

The equivalence of the first two conditions in the following result is

essentially due to Meseguer [M, Prop. 3.13], where the proof relies on the fact that every subset system is equivalent to a union complete one.

Proposition 2. For arbitrary subset systems Z_1 and Z_2 , the following are equivalent:

Z₁ ≤ Z₂

$$\label{eq:INCL} \begin{split} \text{INCL}(\textbf{Z}_1,\textbf{Z}_2)\colon \textbf{Z}_1^{\#}\, P \, & = \, \textbf{Z}_2^{\#}\, P \, (\, \text{for each poset P}); \, \text{i.e., the } \textbf{Z}_2 \text{-closure of e}(P) \\ \text{in J}(P) \, \text{contains its } \textbf{Z}_1 \text{-closure.} \end{split}$$

FREE(Z_1, Z_2): For each poset P there is a Z_1 -continuous map $\lambda_P: Z_1^{\#}(P) \longrightarrow Z_2^{\#}(P)$ such that the following triangle commutes:

Proof. By Proposition 1 we have $Z_1^{\#} P=J(P) \cap \widehat{Z}_1(P)$, and, as remarked earlier, $Z_1^{\#}P$ is the absolutely free Z_1 -completion of P, and analogously with Z_2 . Since $Z_1 \leq Z_2$ is equivalent to $\widehat{Z}_1 \subseteq \widehat{Z}_2$, the implications

$$\mathbf{Z}_{1} \neq \mathbf{Z}_{2} \Longrightarrow \text{INCL}(\mathbf{Z}_{1}, \mathbf{Z}_{2}) \Longrightarrow \text{FREE}(\mathbf{Z}_{1}, \mathbf{Z}_{2})$$

follow immediately.

To prove FREE($Z_1, Z_2 \rightarrow Z_1 \leq Z_2$, let P be a Z_2 -complete poset. It is sufficient to prove that P is Z_1 -complete - this implies $Z_1 \leq Z_2$ by Theorem 1. For any A $\epsilon Z_1(P)$, put a=Ve₁(A) in Z_1^{P} ; by (FREE) we have $A_p(a)=V A_pe_1(A)$ in $Z_2^{P}P$. Since P is Z_2 -complete, there is a unique Z_2 -continuous map f: $Z_2^{P}P \rightarrow P$ with f $\epsilon_2=id_p$. We claim that VA=f($A_p(a)$) in P:

(i) $x \in A$ implies $x=f(e_2(x))=f(A_p(e_1(x)) \le f(A_p(a))$, and

(ii) each upper bound b of A in P fulfils $e_1(a) \neq e_1(b)$ in \mathbb{Z}_1^{p} and hence, $f(\lambda_p(a)) \neq f(\lambda_p e_1(b)) = f(e_2(b)) = b$. \Box

Remark. Analogous considerations concerning colimits in categories are presented by M.H. Albert and G.M. Kelly [AK]. Given a collection Λ of small categories and a small category J, they investigate conditions under which the existence of Λ -colimits always implies the existence of Λ U {J}-colimits. They obtain a characterization theorem analogous to the equivalences

 $Z_1 \not\in Z_2 \iff \text{COMPL}(Z_2, Z_1) \iff \text{INCL}(Z_1, Z_2)$ above. The role of $Z^{\sharp}P$ is, in the categorical context, played by the Λ -colimit closure of a category P in its Yoneda embedding into Set^{POP} . Note, however, that although an absolute subset system Z can be viewed as a special collection of categories (viz., of all posets P with P \in Z(P)) the categorical result does not imply the order-theoretic one, not even for absolute subset systems: if $Z_1 \not\in Z_2$, then Z_2 -cocompleteness of categories need not imply Z_1 -cocompleteness. For example, let Z_2 =S₃ and let Z_1 be the subset system consisting of all Z_2 -sets, plus subsets of the form α_0 , α_0 ; then clearly Z_1 and Z_2 are equivalent. However, a category is Z_2 -complete if it has binary coproducts, whereas Z_1 -cocompleteness entails the existence of pushouts. For example, the dual of the category of compact topological spaces has coproducts but not pushouts [A, p. 38].

References

- [A] J. ADÁMEK: Theory of Mathematical Structures, Reidel, Dordrecht, 1983.
- [ADJ] J.B. WRIGHT, E.G. WAGNER and J.W. THATCHER: A uniform approach to inductive posets and inductive closure, Theor. Comp. Sci 7 (1978), 57-77.
- [AK1 M.H. ALBERTS, G.M. KELLY: The closure of a class of colimits, Sydney Category Seminar Report, January 1986.
- [AKNR] J. ADÁMEK, V. KOUBEK, E. NELSON and J. REITERMAN: Arbitrarily large continuous algebras on one generator, Transactions AMS 291 (1985), 681-699.
- [AN] J. ADÁMEK and E. NELSON: Absolutely definable varieties of continuous algebras, Alg. Univ. (to appear).
- [ANR] J. ADÁMEK, E. NELSON and J. REITERMAN: The Birkhoff variety theorem for continuous algebras, Alg. Univ. 20(1985), 328-350.
- [I] T. IWAMURA: A lemma on directed sets, Zenkoku Shijo Sugaku Danwakai 262(1944), 107-111.
- [M] J. MESEGUER: Order completion monads, Alg. Univ. 16(1983), 63-82.

J. Adámek: Faculty of Electrical Engineering, Technical University of Prague 16627 Prague 6, Czechoslovakia

A. Jung: Fachbereich Mathematik, Technische Hochschule Darmstadt, D-6100 Darmstadt, West Germany

E. Nelson: Department of Mathematics and Statistics McMaster University Hamilton, Ontario, Canada

J. Reiterman: Katedra matematiky FJFI, Husova 5, Prague 1, Czechoslovakia

A. Tarlecki: Institute of Computer Science Polish Academy of Sciences, Warsaw, Poland

(Oblatum 1.9. 1987)

- 177 -