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Monads of indiscernibles 

KAREL ČUDA, BLANKA VOJTÁŠKOVÁ 

Abstract. In the paper the main properties of monads of indiscernibles in AST are in
vestigated. We prove that the notions of to be a minimal monad and to be a monad of 
indiscernibles are different even if they have a lot of common properties. The consistency 
of AST with the existence of Mc Aloon's function is presented. 
Keywords: Alternative set theory (AST), indiscernibles, minimal monad, infinite natural 
numbers, endomorphic universe, interpretability in AST 
Claasification: Primary 03E70, Secondary 54J05,04A20 

Monads in the equivalence = , i.e.classes of decomposition of V according to 
{c} 

= , correspond with ultrafilters on the ring of 5d{c} classes. In this understand-
i c } 

ing minimal monads correspond to minimal (selective) ultrafilters and monads of 
indiscernibles to Ramsey's ultrafilters. In classical set theory the notions " to be 
minimal" and "to be Ramsey's" are for ultrafilters equivalent (see [CN]) . 

In this paper we shall prove, that in the case of monads the situation is different. 
We show namely that there is a minimal monad which is not a monad of indis
cernibles (see §2). For proving this we use substantially Mc Aloon's function, i.e. 
the function whose existence was demonstrated in [Mc Al]. In the last paragraph 
of this paper the consistency of AST with the existence of Mc Aloon's function is 
given. 

For the reader's convenience we remind from [S-Ve],[6—Vo],[C—K] several im
portant facts and notions used further. 

A class I C N is called a class of indiscernibles for the language L|cj iff for each 
formula <p(zi,..., Zk) € SFL{c) and every two sequences t\ < t2 < • • • < tk and 
u\ < u2 < - • • < u* of elements from I we have (p(ti,..., t*) = <p(ui,..., u*) . 

Obviously, I C N is a class of indiscernibles for L{c} iff for each n 6 FN the class 
Pn(I) = { i ; z C J & x « n } is a part of a monad in == 

In [S-Ve] it is constructed a class of indiscernibles for the language L, which is a 
proper 7r-class and which is an intersection of countably many Sd classes—notation 
Ind. This class is a monad in = (see [C-K]). For the language L{c} are all these 
considerations similar, we use notation Ind{cy 

A monad /i (in ==) is minimal in the ordering ^ iff each function F € Sd{c) is 

either constant or one-one on fi. 
Let x $ Def{c}. Then 

Int{c)(x) = {t;(V2ri,*2 € Def{c})(2:1 < x < z2 s zx < t < z2)}. 



110 K.Cuda, B.Vojta§kova 

We denote 
°°Def{c}N = ( Def{c} n N) - FN 

§1. In [C-Vo] minimal monads were investigated. One special type of them are 
monads of indiscernibles. 

Theorem 1, Ind{c} is a minimal monad (in •< ) . 

PROOF: Let F G 5d { c } . We have to prove that F f Ind{c} is either constant or a 
one-one function. Suppose that F f Ind{c} is not one-one. Then there are 11,1*2 € 
Ind{c} such that i\ < i2 and F(ix) = F(i2) = a. The condition F(zx) = F(z2) can 
be, however, described by a formula y?(zi, z2) G 5FL { c } . Let now t be an arbitrarily 
chosen element of Ind{c}. Then either i < i2 and (p(iyi2) holds or i > ix and ^(t'i,t) 
is valid. In both the cases we come to F(i) = a. Consequently F \ Ind{c} is a 
constant function. • 

Remarks. Notice, that in the previous proof the property of homogeneity only for 
couples of elements of Ind{c} have been exploited. 

In Theorem 1 we have proved that Ind{c} is a minimal monad. But this monad 
of indiscernibles was not more closely specified. Hence this statement is true for 
each monad of indiscernibles. 

In [S—Ve] the existence of a monad of indiscernibles was proved. We show now 
that—similarly to minimal monads (see [CJ—Vo])—there are uncountably many 
monads of indiscernibles. For proving this we shall use the following assertion 
from [S-Ve]: 

Theorem A. Let F G 5d{ c } be a function with dom(F) = Pn(S) and rng(F) C 
{0,1}. Hence S 6 5d{ c } . If S is a proper class then there is a proper class RC S 
such that R € 5d{c} and card(F"Pn(R)) = 1 (i.e. there is R which is homogeneous 
for the partition corresponding to F). 

Theorem 2. For each countable system of monads {&;i G FN} in = there is a 

monad of indiscernibles (for the language L{c}) which is a proper class disjoint with 
allfihi£FN. 

PROOF: Let us enumerate all proper 5rf{c} classes, denote them {Xjjt G FN}, 
and all functions of Pn(V) into {0,1} (for every n G FN)—notation {Fj; i G FN}. 
We shall construct a non-increasing sequence {Yfii G FN} of proper 5d { c } classes 
with the following properties: for each k < * 

(1) Yi+tCXkorYi+tCV-Xk; 
(2) Yj+in^ = 0; 
(3) card FkPnh(Yk) = 1, where n* denotes the arity of F* (i.e. Yk is homogeneous 

for the partition corresponding to F*). 
Without loss of generality we can suppose that Xi C N for every i G FN (since 

there is a definable isomorphism between V and N—see [V]). 
Take, firstly, the class Xt and put Yx = Xx. If Yx f\ fiX = 0, put 7X = Yx. 

In the opposite case divide Yx into two disjoint proper classes (e.g. even and odd 
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elements—in natural ordering). Then, however, fi\ is a part of one and only one 
of them. The subclass of Y\ (in this division) which is disjoint with fi\ denote Y\. 
Construct further Fi f Pni(Yi), where Fi is the first element in our enumeration, 
and apply Theorem A. Then there is a proper class Y CY\ which is homogeneous 
for the partition given by Fi f Pni(Y\). Construct now F1IX2 and YD (V - K 2 ) ; 
from these two classes consider the one which is a proper class—denote it Y2. 

The class Yj+i will be constructed by induction in such a way: assume that Yi is 
formed and repeat the above mentioned procedure with "starting points" Y(y /x,-, F,-. 
Thus we obtain the required non-increasing sequence [Yi] i € FN} with properties 
(l)-(3). Then, however, f]{Yi; i £ FN} is a monad, which is a proper 5d{c} class, 
disjoint with countably many considered monads fii and, moreover, homogeneous 
for all the partitions given by Fj. 

What remains to verify is that n W * 2 € FN} is a monad of indiscernibles for 
the language L{c}. This proof (based on the above proved homogeneity) can be, 
essentially, find in [S-Ve]. • 

Theorem 3. There are uncountably many monads of indiscernibles (for tke lan
guage L{c} ) which are proper classes. 

PROOF: If there is only a countable number of monads of indiscernibles (for L{c}) 
then we can construct—using Theorem 2—next one, which will be different from 
all preceding monads of indiscernibles. • 

In the previous theorem we have proved that there are uncountably many monads 
of indiscernibles. Now we show that even under each infinite definable number we 
can construct uncountably many monads of indiscernibles. 

T h e o r e m 4. Let a €°° Def {cj N Then for each countable system of monads 

{m',i € FN} in = such that fii < a for every i G FN there exists a monad v of 

indiscernibles (for the language L{c} ) such that v < a and v is disjoint with all fii 
from the given system. 

At first we prove an auxiliary assertion, close to Theorem A, which says that for 
each infinite x € Def {c} and for each partition of Pn(ar), definable from c, into two 
sets there exists an infinite set y C as, y £ Def{c}, which is homogeneous for this 
partition. 

Lemma 1. (V* € Def { c } - Fin)(Vz C Pn(x)nDef{c})(3y € Def{c} - F i n ) such that 

(4) [yQx k (Pn(y) C z V Pn(y) C Pn(x) - z). 

PROOF: If follows from Ramsey's theorem that there is an infinite set y fulfilling 
(4). Hence it remains to prove that there is such an element y, definable from c. 

Let us examine the set t = {y; y C x k y is homogeneous for the given partition}. 
Then t 6 Def {c} and includes some infinite elements. Put 

0 = max{|y|;y € t} ; 

note that /5 € Def{c}. 
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Let further t\ contains just the elements of t whose cardinality is ft. Denote a the 
largest element of t\ (in natural ordering); then a is the required element (obviously 
a € Def {cJ - Fin). • 

Proof of Theorem 4. It is enough to modify slightly the proof of Theorem 3 
using now Lemma 1 instead of Theorem A. The role of proper 5d{c} classes play 
now infinite sets from Sd{c} and F,- are characteristic functions of z. 

Theorem 5. Under each a €°° Def N there are uncountably many monads of 
indiscernihles (for the language L^). 

PROOF: Proof is analogous to the proof of Theorem 3. • 

§2. From the definition of monads of indiscernibles it follows immediately: 

Theorem 6. Let ft be a monad of indiscernibles for the language L,e 6 ft. Then 
fi PI e and fi D (N — e) are monads of indiscernibles for the language L{e}. 

Remark. There is a question whether the assumption e € w, in the previous 
theorem, is essential. In other words, if we take an arbitrary element / , we are 
interested if fx C\ f and f*H(N — / ) are monads of indiscernibles for the language 
£{ /} . The answer is negative as for a convenient / a more stronger assertion then 
/ D u is not a monad in = is valid: this is the content of the following theorem 

from [C-Vo]: 

Theorem B . Let fi be a monad. There are c,x such that fi C\ Int{c}(x) is not a 

monad in = . 
{c} 

We shall tend to finding a connection between Theorems B and 6. At first we 
prove one theorem and an auxiliary lemma. 

Remark. In the following theorem we show that if a function F € Sd{c} on Ind{cj 
"goes down" then its values He either over all indiscernibles smaller than its argu
ments or fall under a definable element (and therefore under Ind{c}). 

For minimal monads we proved in [C—Vo] a weaker form of this assertion. More
over, we know that there is a minimal monad fulfilling Theorem 7(see also [C-Vo]) 
and that this monad is not a monad of indiscernibles (it will be shown here— 
Theorem 8). The existence of a minimal monad for which Theorem 7 does not hold 
we are not able to demonstrate. 

Theorem 7. Let F € Sd be such a function that F(t) < t for one (and hence each) 
t € Ind{c}. Then just one of the following properties is true: 

(i) (Vt € Ind{c}){.r; F(t) < x < t} n Ind{c ) = 0 
(ii) (3d € Def{c})(Vt € Ind{c})F(*) < d < t. 

PROOF: Let us suppose ~.(i). Then there is u 6 Ind{c} for which F(t) < u < i 
is valid for a certain t € Ind{c}. Let <p(u,t) be the formula F(t) < u; obviously 
<p(u,t) € X{c} and (p(u,t) is true for our couple (u,t). Then,however, y(v,t) is 
valid for every v € Ind{c} such that v < t (see the definition of Ind). This implies 
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F(t) < Ind{c}. From Theorem 1 of [C-Vo] it follows that there is d £ Def{c} such 
that F(t) < d. Since t £ Ind{c}, we obtain d < t. Hence (ii) is fulfilled for t. 
Because d £ Def{c},t £ Ind{c} and (ii) is true for t, (ii) is valid for all elements of 
Ind{c}. • 

The reader can realize that also here we have used the property of homogeneity 
only for couples of elements of Ind{c}. 

Lemma 2. Let /i be a monad of indiscernibles (for the language L)} e £ /* and 
e <°° Def N. Let further x £ N — FN is such an element that there is f £ fj. for 
which x < f < e is valid. Then /. fl e = \L 0 Int{e}(x). 

PROOF: For proving this it is sufficient to realize the following facts: The definition 
of Int implies the inequality FN < Int{e}(x) <°° Def N. From Theorem 7 we know 
that for each a £ /i such that a < e we have a £ Int{ej(ar) (for this remember that 
y £ Def{c} = (3F £ Sd{c})y = F(c)). Moreover y, fl e is a monad of indiscernibles 
for the language L{ej (see Theorem 6). • 

The next theorem demonstrates that minimal monads and monads of indis
cernibles are really different notions. We shall namely prove that it is consistent 
with AST that there are not any monads of indiscernibles under °° Def N and we 
already know (see [C—Vo]) that there are minimal monads here. 

For proving Theorem 8 we shall use substantially a result from [Mc Al] and the 
technique of endomorphic universes with standard extension (e.u.s.). If someone 
would like to modify this assertion for nonstandard models of PA, it is enough to 
substitute the technique of e.u.s. by an application of a convenient ultrapower. 

Definition. We say that a function / is c-Mc Aloon's function (denotation c~Mc 
Al function) iff / £ Def {c} and f'FN is coincial with °° Def {c} N. In the cases that 
c £ Def or c is clear from the context we shall omit c from our notation. 

Theorem 8. Let there exists f £ Def which is Mc Al function. Then there is a 
monad of indiscernibles fi such that fi <°° Def N. 

P R O O F : Let A be e.u.s. Then f £ A (since Def C A). Let us denote 

F 1 = / n [ ( N - F N ) x F N ] 

and let g £ A be a prolongation of Fi. The assertion wiU be proved by a contra
diction. Let there exists a monad of indiscernibles ft such that /i <°° Def N. We 
know that ft = n { x n ; # n € Def}. Let h £ Abe such a descending function that 
/i = f |{h(n) ;n £ FN}. Denote 

v = Ex(fi fl A). 

Then evidently v C ,u, as for every a £ Ex(FN) we have v C h(a) C /*. 
Since / is Mc Al function,we obtain (thanks to the standard extension) that 

/ "Ex(FN ) is coincial with Ex(°°Def N). Moreover, obviously, 

/ " Ex(FN) C Ex(FN) U Ex(°°Def N). 
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From the construction of v we have 

(5) Ex(FN) < 1/ < Ex(°°Def N). 

Realize further that 

g f FN = f(l {(N - FN) x FN] 

and therefore (we suppose that A is an endomorphic universe with standard exten
sion) 

(6) g r Ex(FN) = / n [(N - Ex(FN)) x Ex(FN)]. 

At the same time 

(7) g f Ex(FN) C Ex(°°Def N) x Ex(FN). 

Notice further that for each fixed t*2, t3 € /* such that t*2 < 13 the following formula 
holds for each n € FN: 

(8) (Vk < n)(f(k) >i2=> f(k) > i3). 

Fix hence 1*2, t"3 and investigate all the numbers for which (8) is valid. Obviously, 
it is true also for some infinitely large natural numbers. This implies, however, that 
there is t"i € /i, t'i < t"2 such that 

(9) (V<* < .,)(/(-,) > -2 => / ( a ) > i3). 

This formula (it is a set-definable formula) is therefore valid for all triples 
(*i>*2» *3) of indiscernibles (see the definition of a monad of indiscernibles). Take 

t"i € fi n Ex(FN) 

(such ti exists since Ex(FN) is complete and /u is coincial with N — FN). Denote 

fi = min<3fwt*i. 

Then fi € Ex(°°Def N); for this remember (7) and the fact that ti 6 Ex(FN). 
Farther fi = f(a) for a certain number a < t'i (see formula (6)). Moreover, 
fi <°° Def N since g"FN C $"ti and fi is the smallest element oig"ii. 

Let us come back to properties of 1/; remind for this (5) and the circumstance 
that/3€Ex(°°DefN). 

Choose t2 € v\ then t'i < i2 (since t'i € Ex(FN)). Furthermore t'2 < f(a) = fi 6 
Ex(°°Def N); but fi <°° Def N and hence there is t"3 G fi such that t"3 > fi. Using 
now formula (9) for our special a we come to the impUcation 

/ (a ) > t2 ==> f(a) > t3, 

which is a contradiction since t'2 < /(<*), but t3 > / (a ) = fi. This completes the 
proof. • 
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Remarks. The proof can be easily overworked into the parametric version ( / G 
Def{c}). We only have to demand in this case that c € A. 

The reader may notice that in the previous proof we used—firstly in this paper— 
the homogeneity for triples. 

In [6—Vo] we investigated the notion of a great distance between infinitely large 
definable numbers and gave several equivalents of it. When supposing the existence 
of Mc Al function we can obtain stiU one interesting necessary and sufficient condi
tion, namely that two infinitely large definable numbers are very far one from the 
other iflt one falls into Ex(FN) and the other into the convex hull of Ex(°°Def N) 
for a suitable standard extension. 

For proving this assertion we need one theorem from [C-Vo]: 

Theorem C. There exists a minimal monad fi in the class X = {a; F N < a < 
00 Def {c} N} such that for every F G Sd{c} , F : n -> N, there is Z € Sd{ c } , Z D p, 
such that either (i) or (ii) takes place, where 

(i) F r Z : FN -> F N 
(ii) F"ZnFN = <t. 

L e m m a 3 . Let p be a monad from Theorem C and f be Mc Al function. Let 
further a € ft, ft »FN <*• Then there is at < a such that ft < f(a\) »FN OJ. 

For the reader's convenience we recall from /C—Vo/; 

a « F N b = (VF € Sd 0 ) (F : F N -> F N =t> F(a) < b) 

PROOF: Denote 

7 = max{/(o;i); ai < a k f(ai) < ft}. 

We shall prove that 7 »FN a- Suppose the contrary. Then there is a function 
g 6 Sd0 such that g : F N -> F N and g(a) > 7 . 

Let us define the function h as follows: 

(10) fc(0-smin(/"C-t»(0)-

Then, evidently, h(a) > ft »FN <*. 
It follows from Theorem C (since h G Sd and (i) does not take place ) that 

h(a) > n for a certain n G°° Def N On the other hand, we know (see (10)) that 
h(a) <°° Def N; for this realize that g(a) <°° Def N,g : FN -> F N , / is Mc Al 
function and therefore f"a is coincial with °° Def N We come to a contradiction. • 

Theorem 9. Let there exists f G Sd which is Mc Al function. Then 

a «FN ft = (3e .u . s .A ) (37 G Ex(°°Def N))(a G Ex(FN ) k ft > 7). 

PROOF: At first we prove <=. Notice that this implication remains to be true even 
if we do not suppose the existence of Mc Al function. 
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Obviously it suffices to show that a «FN 7- Since 7 € Ex(°°Def N), we have 
7 > Ex(FN). But a € Ex(FN). Let us apply now one criterion for to be very far 
from [6-Vo]: 

(11) a «FN fi = (3e. u.s. A)a € Ex(FN) < fi. 

Then we obtain a «FN 7-
For proving =» recall (from [C-Vo]) that there are a\, 0\ such that a < a\ < /3\ < 

P and ai,l3i € /i, where /1 is the monad from Theorem C. Moreover, &\ »FN ot\ 
(ji is minimal). In accordance with Lemma 3 there exists therefore a\ < a\ such 
that f3\ > f(a) » a\. Apply now (11) for a\ and /(o) , We obtain that there 
is an endomorphic universe with standard extension A such that a\ € Ex(FN) 
and f(a) i Ex(FN). But f(a) € Ex(°°Def N), since / is Mc Al function. For 
completing the proof put 7 = f(a). • 

§3 In the paper [Mc Al] it is shown how to construct a countable model of PA, in 
which Mc Al function / is definable without parameter. Furthemore, one can find 
there an instruction for the construction of such a countable model of PA, in which 
do not exist definable—without parameter—infinitely large natural numbers, but for 
a convenient parameter Mc Al function, with this parameter, can be defined. Both 
these construction are realized by a suitable modification of Henkin's construction 
of the countable model for countable consistent theory. Since Henkin's construction 
requires only the possibility to speak about countable parts of natural numbers, one 
can repeat it in the second order arithmetic. Therefore we may realize it, and hence 
both the above mentioned constructions, in the alternative set theory (AST). 

Theorem 10. The theory 

T\ = ( AST + the existence of Mc Al function f G Def) 

is interpretable in AST. 

Theorem 11. The theory 

T2 = [ AST 4- Def = VFN + \(3c)(3f)(f € Def{c} k f is Mc Al function)}] 

is interpretable in AST. 

Proofs of Theorems 10 and 11:. From the remark which precedes to Theorem 
10 it follows that in AST we have for our disposal two countable structures, that 
are models of PA, and therefore also of ZFmn. Moreover, one of them—denotation 
£2—-8 elementary equivalent with FN; in 52 Mc Al function / with parameter is 
definable. In the other structure—let us denote it S\—this function is definable 
without parameter. 

Let U be a nontrivial ultrafllter on FN. Let us construct the ultrapowers of 
S\, £2 with -^N m the index class. We assert that from these ultrapowers we can 
obtain the required interpretations of Ti and T2 in AST. 
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Since the respective interpretations are described, under weaker assumptions, 
in [S] and because ultrapower belongs to usual mathematical constructions, we 
shall present here only a brief description of these interpretations. We shall take 
stronger assumptions than in [S] (the axiom of choice) which should make the 
reader's understanding easier. 

Further we shall work with Si and $2. Since these structures are models of ZFFin, 
we shall use for the relation memberskip the symbol e. 

Let us denote 
V" = {f;f:FN-+S2} 

and let 
f=g = {t;f(t) = g(t)}eU. 

Construct V* = V**!Q and take (we suppose the axiom of choice) the representa
tives of factor classes in such a manner that from classes of almost constant func
tions (constant on an element of U) we choose as the representative the respective 
constant function. 

Put further 
feg = {t;f(t)eg(t)}eU. 

Classes are now all subclasses of V* and sets are such classes X that there is / € V* 
such that X = {g;g € V* k g€f}. 

The scheme of existence of classes (i.e. Morse's scheme) in the interpretation we 
obtain from the same scheme in the theory (when using the initial structure and the 
ultrafilter U as the parameters). The axioms for sets we have in the interpretations 
immediately since they are true, thanks to Los's theorem, in the structures. 

Realize further that 

FN* = {f;(3neFN)tng(f) = {n}}. 

This at once implies that there is a one-one mapping between FN* and FN; 
hence the property of countability is absolute. For verifying the axiom of two cardi
nalities it suffices to prove that there is at least one uncountable class in V*. Notice, 
because of this, that V* is uncountable since it contains all constant functions. It 
implies, however, that we can embed V into V* and thus an uncountable class exists 
(in V the axiom of two cardinalities holds). 

We shall prove now (the axiom of prolongation)*. Let / 1 , /2, • • •, /n be a countable 
class of functions and F a class function such that F(n) = / n , where / n G V*. We 
tend to find a set prolongation of F, i.e. a function g for which 

9"(»)=/n(-), 

where the index up denotes variables in the sense of the interpretation and • variable 
in the index class (FN) from the construction of the ultrapower. Put 

ff(i) = { < / , ( i ) , i > } 
ff(2)={</i(2),l>,</2(2),2>} 
9(3) = {< /i(3),l > ,< /2(3),2 > ,< /3(3),3>},etc 
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Evidently g is a set function (owing to the axiom of prolongation in the theory) 
and for each n < k we have 

,-(*) = /„(*). 
Hence g is the function we have looked for. 

The class V* can be well ordered since the restriction of well ordering of V on V* 
is the class (in the sense of the interpretation), which is well ordering and hence it 
is well ordering also in the sense of interpretation. 

Thus we have shown that, when following the above described procedure, we 
obtain the interpretations of AST. For completing the proof of both theorems it is 
sufficient to demonstrate the interpretability of Mc Al function definable with and 
without parameter. We show, for this purpose, that the constant function with the 
value of Mc Al function is Mc Al function in the interpretation. 

Firstly we shall investigate Mc Al function / 6 Def. Then the following statement 
holds: 

(S): For each a G°° Def N there is n 6 FN such that 

FN < f(n) < a. 

We prove that (3!/)t1f(/), where <p is a set formula describing Mc Al function— 
this assertion is, however, a corollary of Los's theorem. Furthermore, we verify 

(sy. 
Let ( a € ° ° D e f N ) * , t h e n 

[(3!a) >/> (a) k a € N k (Vn € FN)a > n)\ 

Formula ^ is a set formula and therefore, thanks to Los's theorem, -/- defines 
just one element which fulfills this assertion in S\. This implies that the elements 
of °°Def N are just the constants from °°Def N in 5 i . Hence, for proving (5)*, 
it suffices to use the absoluteness of FN and °° Def N and to apply again Los's 
theorem for fixed elements of FN and °° Def N 

In the case that / is in the model defined by a parameter c, we must add c as 
a logical constant into the language. Then there exists a function <.£>(/, c), which 
describes Mc Al function. Repeating the above mentioned process we can transfer 
00 Def {c} N and realize that the parameter c is such a constant function that f(n) = 
c for each n € FN. The rest of the proof is quite analogous. 
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