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On normal forms of Laplacian and 
its iterations in harmonic spaces 

MASANORI KÓZAKI AND HlDEKICHI SUMI 

Abstract. We give the normal forms of the successive iterations of the Laplacian for har
monic spaces and characterize the particular classes of 2-stein spaces. 
Keywords: Iterations of Laplacian, Harmonic spaces, 2-stein spaces. 
Classification: 53C20, 58G99 

1. Introduction. 
The successive iterations A* of the Laplacian A on a Riemannian manifold can be 

calculatecr*at the center of any normal coordinate system by means of the curvature 
tensor and its covariant derivatives. In [4], O.Kowalski proved that the correspond
ing normal forms for a symmetric space of rank one are certain partial differential 
operators with constant coefficients. 

Our results are stated as follows. We first generalize Kowalski's theorem above 
to a harmonic space, i.e., the infinite sequence of the conditions (P)*, k = 2 , 3 , . . . , 
holds (See Section 2 for the definitions) if and only if the manifold is harmonic 
(Theorem 1 below). In [4], O.Kowalski also characterized the Einstein and super-
Einstein spaces by means of (P)2 and (P)2 — (P)3 respectively. By the conditions 
( p ) 2 _ (P ) 4 , we characterize the particular classes of 2-stein spaces which should 
be located between the harmonic and the super-Einstein spaces (Theorem 2). We 
further prove: (1) a 4-dimensional Riemannian manifold satisfying (P)2 — (P)4 is 
locally flat or locally isometric to a symmetric space of rank one (CoroUary 1); (2) 
an n-dimensional 3*-stein space with 3 < n < 5 satisfies (P)2 — (P).i (Corollary 2). 

In Section 2, we state our results precisely; Theorems 1 and 2. In Section 3, we 
give the proof of Theorem 1 . Section 4 is for preparation of the proof of Theorem 
2 and its Corollaries 1-2. In Section 5, we give the proof of Theorem 2 and its 
coroUaries. In the final Section 6, we give the normal forms of A* for harmonic 
spaces by the recurrence formulae. 

2. Statement of results. 
Let (M, g) be an n-dimensional connected C°° Riemannian manifold with n > 2 

and Bm(r) be the geodesic ball in M at center m € M with small radius r > 0 and 
let (17; a?1,a:2,... , x n ) be a normal coordinate system around m. For a function / 
of class C°° near m, we denote by A m the local differential operator given by 

ґl(дx'У 

We would like to express our hearty gratitude to Professors O.Kowalski and L.Vanhecke for their 
valuable comments. 
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A m is independent of the choice of normal coordinate system around m. Due to 
[2], for each k = 1 ,2, . . . , there is a globally defined differential operator on (M, g) 
which concides with A m / at m. 

In this note we are concerned with the following condition introduced in [4]: . 

(P)k There exist constants Aky\,Ak,2f •• >Ajfc,*-i depending only on (M, g) such 
that, for each m £ M, 

* - i 

(2.1) (A*/)(m) = ( A m / ) ( m ) + £ AM(Am/)(m) 
t = i 

holds for all analytic functions / at m, where k is a natural number. 

In (2.1), the condition (P)i is understood to hold; (A/ ) (m) = ( A m / ) ( m ) = 
(Am/)(m). 

We call the space (M,g) harmonic if, for each m £ M, there exist an r > 0 and 
a function F : (0,r) —> R such that the function f(n) = F(d(m,n)) is harmonic in 
Bm(r) \ {m}i where d is the distance function defined by the Riemannian metric. 
It is well known that examples of harmonic spaces are those locally isometric to a 
Euclidean space and a symmetric space of rank one (cf. [1], [7]). 

Our first theorem is the following 

Theorem 1. Let (M,g) be an n-dimensional connected C" Riemannian manifold 
with n > 3. Then the infinite sequence of the conditions (P)k> k = 2 , 3 , . . . . holds 
if and only if (M, g) is a harmonic space. 

We denote by (gij) and (Rijkt) the metric tensor and the curvature tensor with 
respect to the normal frame (d/dx1 ,d/dx2,... ,d/dxn). Throughout we exploit 
Einstein convention as well as the extended one, i.e., the summation convention for 
repeated indices. The Ricci tensor and the scalar curvature are denoted by (pij) and 
r respectively; pij = -RfttJ,r = p j . We also denote the length of a tensor T = (T,j) 
by |T|, i.e., |T|2 = TijT%K Finally, we denote by V; the covariant derivative. 

Let TmM denote the tangent space to M at m . We define the tensor field pW(x) 
by 

n 
P (x) — 2 l / Rxpixp2Rxp7xp3 • • -Rxpkxpn 

J > i , - , J » k = l 

for x £ TmM. 
We call an Einstein space k-stein if there are real valued functions fit on M such 

that pM(s) = fjtt\x\2t for all x £ TmM and m € M for 2 < £ < k. We further call a 
fc-stein space k*-stein if |i?|2 is constant. 

We use the following notation: 

v v v 
Rij = RiupqRpqraRrajut R — Rkk 

X __ « . _ X. X 
iljjj = RiupqRpqrsRrsju<> R = - M : * 

Our second theorem is the following 
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Theorem 2. Let (M, g) be an n-dimensional connected C°° Riemannian manifold 
with n > 3 . Then the conditions (P)2 — (P)4 are necessary and sufficient in order 
that (M,g) be a 2*-stein space and satisfy 

v v. 
v -£ 3|VR |2 - 20I* + 16.R 

(2 .2) WiRabcdVjRabcd - 20Rij + IGRij = J ! — : L - ^ ; 

v 2. 
(2.3) 3|VJe|2 - 20R + 16R = constant 

(2.4) V y ( R 0 - 2%) = ±Vj{R - 2%9ij 

Corollary 1. Let (M,<r/) be an n-dimensional connected C°° Riemannian manifold 
with 3 < n < 6. The conditions (P)2 — (P)4 o,re necessary and sufficient in order 
that the following assertions hold: 

(1) if n = 3,4, then (M,g) is locally flat or locally isometric to a symmetric 
space of rank one. 

(2) if n = 5, then (M,g) is a 2*-stein space and, satisfies |VP |2 = constant and 

IVRI2 

(2 .5) ViRabcdVjRabcd = L~n~
L9ij 

(3) if n = 6, then (M,#) is a 2*-stein space and, satisfies (2.3) and (2.5). 

Corollary 2. Let (M,g) be an n-dimensional connected C°° 3*-stein space with 
3 < n < 5. Then (M,g) satisfies the conditions (P)2 - (P ) 4 . 

3 . Proof of Theorem 1. 
For the proof we use the expansions of two geometric mean values. 
Let (M, g) be an n-dimensional connected C°° Riemannian manifold with n > 2. 

The Erst mean value Mm(r, f) for a real valued continuous function / is defined by 

Mm(r, f) = (vol(dBm(r))rl f /(«) <£*(*), 
JdBm{r) 

where da stands for the volume element on the geodesic sphere dBm(r). Similarly, 
the second mean value Lm(r,/) for an / is defined by 

Lm(rJ) = ( v o K S - H l ) ) ) " 1 / ( / o « p m ( r t i ) ) Ai, 
.IS»-*(1) 

where expm is the exponential map at m € M and du is the usual volume element 
on the (n — l)-dimensional unit sphere 5n""1(l). 

In [2], A.Gray and T.J.Wiilmore obtained the expansion 

(3.1) Mr , / ) = / M + g 2tfc,n(n ^ . f r l 2k - ^ < ' - °> 
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for an analytic function / at m, and computed A m / and A m / explicitly. 
PROOF of Theorem 1: Suppose first that (M,<?) is a harmonic space. Set r(n) = 
d(m,n),n € M and 0 = r 2 /2 . Then it is known that AQ, == «x(-̂ ) is a function of 
Q, only and does not depend on the reference point m (cf. [1], [7]). We call x the 
characteristic function of M . We further have 

— 1 °° 
Ar = -— + y;«2jfc_1r2*-1 , 

r f—' 
* - i 

where a^. .! = x(*>(0)/2*k!. 
Now due to [6], there exists a sequence of polynomials p*, k = 1 ,2, . . . , without 

constant terms such that, for each m € M, the expansion 

(3.2) M m ( r , / ) = / (m) + f > ( A ) / ( m ) r 2 * (r - 0) 
*=1 

holds for all analytic functions / at m. Further p*, k — 1 ,2 , . . . , are defined by: 

oo 

6x(r) = 1 + ]Tp*(A)r2* (A = constant) 
*=-i 

is the solution of 6'{(r) + (Ar)6'x(r) - \6\(r) = 0. Hence, setting pk(X) =. 2*k! n(n + 
2 ) . . . (n + 2k — 2)pjfc(A),pjk(A) satisfies the recurrence formula 

(3.3) 

ř?i(A) = A 
* 

p*+i(A) - Ap*(A) + 53cJa iplb_> + 1(A) = 0 , k > 1, 
; - i 

where c) = ^ ^ n ^ k - s + l)(n + 2k - 2s + 2). From (3.3), pk(X) is written as 

(3.4) pfc(A) = A* + B*" 1 A*"1 + • • • + BjA, 

for some constants B j " 1 , . . . ,£?£. Thus we have 

A* + B*T1A*-1 + --. + BjA 
(3.5) p*(A)= 2 * W n ( n + 2 ) . . . ( n + 2 ] b ^ 2 ) 

On the other hand, it follows from [3] that, for each m € M, 

(3.6) MTO(r,/) = Lm(r,/) (r - 0). 

Hence by (3.6), comparing the coefficients in the expansions (3.1) and (3.2), we have 

(3.7) A m = A* + B*- 1 A*"1 + • • • + B\ A, 

for k = 1,2, Thus we obtain (2.1) by induction. 
Conversely, suppose that the infinite sequence of the conditions (P)*, ib -= 1 ,2 , . . . , 

holds. Then from (2.1) we have (3.7) by induction.Hence, due to [3, Theorem 2] or 
[0, Theorem 2 (1)], (M,gr) is a harmonic space. 
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4. Preliminaries for proof of Theorem 2. 
In this section, we prepare the explicit formula of A m / for the super-Einstein 

space and the curvature properties of the super-Einstein, the 2*-stein and the 3*-
steifi spaces which we use for the proof of Theorem 2 and its corollaries. 

We first introduce the following notation: 

Rijkt = Rikjt, R(ij)kt = Rijkt + Rjikt, 

Aijkt\\pq = RijprR(kt)qr + RikprR(jt)qr + RitprR(jk)qr, 

Aijkt = Aijkt\\pp, 

Eijkt = 9ij9kt + 9ik9jt + 9it9jk-

Now, if pW(x) = fi2\x\4 holds for all x € TmM and m € M, then 

(4.1) A^kt = ^Eijkt, 

where ^ = (3n|H|2+2r2) /n 2(n + 2). Also if pW(x) =- / i 3 |af holds forall x € TmM 
and m € M, then 

(4'2) / J Aijkt\\a0R{pq)0a = 4^3 _>^ Eiikt9pq, 
or or 

where a runs over all permutations. 
We call an Einstein space super-Einstein if \R\2 is constant and 

Rij = RipqrRjpqr = l-^l2.9ij7n- N°te tha* 2*-stein spaces are super-Einsteinian. 
Indeed this is obtained by transvecting (4.1) with gki. 

1° ([5]) Let (M,g) be an n-dimensional super-Einstein space. Then it holds 
that 

(4.3) A m / « A 4 / + l r A 3 / + - i - ( - r 2 + 4 | i*|2)A2 / 
n Ion n 

0 * —..i - 1 ,272 •» 168 ,_,ov _ _ 
+ i5^»n«/ + HJ5^T + VT | J i | ) A / 

1 v v_ 
- -^(WiRabcdVjRabcd - 20.R.,- + l6Rij)Vy 

+ 155 {82v* " B V i ( 3 | V H | 2 " 2 ° * + 1 6 ^ > V i / ' 

wiiere y>< =V,{ (% - 2l t J) - }(Jl - 2R)9ij}. 
2° ( [5]) Let (M,g) be an n-dimensionai super-Einstein space. Then it holds 

that 

v _>L i v .__. 
(4.4) # t i - 2i20 == -(J? - 2i2)£/.i, for n < 6, 

(4.5) R - 2S = - i { ( i - 12 + H)r 3 + 3(1 - -)r|i?|2}, for n < 5. 
4 n n2 n 
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3* ([5]) Let (M,g) be an n-dimensional 2*-stein space. Then it holds that 

(4.6) 
2 2 v v. 

^iRmkcd^jRabcd = ^ pRiaic^ pRj abc = J T ^ l Si3 + ^*i + 4^*i' 

(4.7) |V.H|2 = - - r | H | 2 + R + 4R . > 
n 

4* Let (M,g) be an n-dimensional 3*-stein space. Then it holds that 

(4.8) ihi ~ 2 ! ; ; = ~-(7^ - 25)*;, 

where 71* - 2B + ^ r 3 + f r|H|2 = 2/i3n(n + 2)(n + 4). 

(4.8) is obtained by transvecting (4.2) with gkigpq. 

5. Proof of Theorem 2. 
PROOF of Theorem 2. Sufficiency.: Suppose that the conditions (P)2 — (P)4 hold. 
Then for each k = 1,2,3,4, A^ is represented as a linear combination (with constant 
coefficients) of A*, A*""1,..., A. By (3.1) we obtain, for each m € M, the expansion 

(5.1) Lm(rJ) = f(m) + ]Tpfc(A)/(m)r2* + 0(r10) (r - 0), 
fc=-i 

where p*,lb = 1,2,3,4, denote the polynomials without constant terms and with 
constant coefficients. Due to [5, Theorem 1 (2)], (Msg) is a 2*-stein space and, 
satisfies (2.2) and 

(5.2) VjUXt, - 2 l „ ) - i(fl - 2R)gii} = 82^8 Vf(3|ViJ|J - 20* + 161), 

whence we have the following 

(5.3) Am = A2 + | j A , 

(5.4) Am = A3 + JrA* + -±-( iT - + |*|-)A, 
n Ion n 

,* e\ X4 A4 , 4
 A3 , 4

 r21n + 46 2 

(5.5) A^ = A4 + ~rA 3 + — --{ r2 

v ' m n 15n(n + 2)1 n 

+ 2 ( 2 „ + 7 ) W ) i . + ^ { H 5 j ^ . 

+ ? ^f i ' l « l ! - j< W - »* + "*»*• 
Indeed, (5.3)~(5A) are shown in [4] and (5.5) is obtained from (4.3). Since the 
coefficients in (5.3) - (5.5) are constants, (2.3) follows. This with (5.2) imphes (2.4). 
Hence the sufficiency of (P)2 — (P)4 foUows. 
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Necessity. Suppose that (M,g) is a 2*-stein space and satisfies (2.2)-(2.4). Then, 
as in the above, the formulae (5.3)-(5.5) hold and the coefficients are constants. 
Hence (P)2 - (P)4 follow. 

Theorem 2 is proved. • 
Next we prove Corollaries 1-2. 

Lemma 5.1. . Let (M,g) be as in Corollary 1. Then the following assertions are 
mutually equivalent^ except for the case n =- 6 in (3); 

(1) the conditions (P)2 - (P)4 hold; 
(2) (jM,g) is a 2*-stein space and satisfies (2.2), (2.3); 
(3) (n < 5) (M,g) is a 2*-stein space and satisfies (2.5), |VH|2 = constant. 

PROOF : Notice that (2.4) holds by (4.4) - (4.5), provided (M, g) is a super-Einstein 
space with n < 6. Then combining Theorem 2 and [5, Proposition 6.3], we obtain 
the assertions of Lemma 5.1. • 
PROOF of Corollary 1: This is immediate from Lemma 5.1 and [6]. • 
PROOF of Corollary 2: Suppose first that 3 < n < 6. Then by (4.4), (4.6) - (4.8), 
we have (2.5) and 

v v. 
v R ~ R 

(5.6) Rij = -gtj, Rij = —_7i>. 
Substituting (5.6) into (4.6) and applying V,, we obtain 

v v. 
(5.7) (n + 12)R + 8(2n - 3)P - 3|VB |2 = constant. 

This with (4.5) and (4.7) implies |VR |2 = constant. Hence the conditions (P)2 — 
(P)4 follow from Lemma 5.1. • 

6. Examples. 
Let (M,g) be a harmonic space with dim M — n. Then from (3.3), we obtain the 

recurrence formulae for Akfi in (2.1) and B*~m in (3.7) (APtP = B£ = l ,p = 1 ,2 , . . . 
by convention): 

k-i 

(6.1) Akii = - £ 5*"m^*-m,i(« = 1 , 2 , . . . , * - 1), 
m-1 

ib—m m 

(6.2) BJTm = " E E 2'CJ+m-1«»-iB.+ra_, (m = 1,2,..., * - 1). 

For example, from (6.2) we have 

(6.3) BJ;-1 =-*(*- l )a_ , 

(6.4) £ * - 2 =i*(fc - 1)(* - 2){(3k - l )a 2 - 4(2n + 3* - 5)o 3 } , 

(6.5) I?*"3 = - ±k(k - l)(fc - 2)(k - Z){bk(k - ljttj 

- 4{10(k - l)n + 15k2 - 43k + 22}a_a3 

+ 4{15n2 + 6(8k - 17)n + 8(5k2 - 21k + 1 9 ) H ] . 
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On the other hand, a i , a 3 , a s are obtained by [1], [7], [8]: 

a^~h a3 = -m^T2){2-T + mi)' 
(6-6) a s=48^5^Wrij{2 7 | V i i i2 

T 3 9r « 7 V ---_ 3 2 ( - + | l | K f +!*-*)}. 

Substituting (6.6) into (6.3) - (6.5), we have the formulae for B%~m(m = 1,2,3), 
whence by (6.1) we can write down the formulae for Ak,k-t(t =1 ,2 ,3) . In particular 
(5.3) - (5.5) are obtained and the normal forms of A2 , A3 , A4 are also computed. 
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