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Remarks on equational theories of semilattices 
with operators1 

J. JEŽEK, N. NEWRLY AND J. TŮMA 

Abstract. Some results are proved making the verification of well-behavedness of a semi-
lattice with operators more easy. Well-behaved chains with one operator are characterized. 
We also describe an algorithm producing the lattice of equational theories extending the 
equational theory of a finite, not necessarily well-behaved chain with one operator. 

Keywords: Semilattice, equational theory 
Classification: 08B05 

0. Introduction. 
Let us call a lattice L representable by a universal algebra A if it is isomorphic 

to the lattice of equational theories extending the equational theory of A (or, which 
is the same, antiisomorphic to the lattice of subvarieties of the variety generated 
by A). There are some restrictions on a lattice to be representable; cf. W. Lampe 
[3]. We have shown in [1] that in many simple cases when there is a hope for L 
to be representable, nominal semilattices with operators are good candidates for 
the algebras establishing the representation. (By "nominal" we mean that all the 
constants are added as fundamental miliary operations, and by an operator we mean 
an endomorphism of a semilattice.) For example, it is not difficult to represent the 
pentagon or, more generally, the parallel join of any two finite chains, by a finite 
nominal semilattice with operators. Of course, not every representable lattice can 
be represented in this way: it follows from D. Papert [5] that the congruence lattice 
of any algebra containing a semilattice operation among its fundamental operations 
is necessarily relatively pseudo-complemented. 

For an algebra A denote by E(A) the lattice of equational theories extending the 
equational theory of A. An algebra A is said to be well-behaved if it is nominal and 
the lattice E(A) is canonically isomorphic to the congruence lattice of A. In [1] we 
were concerned with well-behaved semilattices with operators, and the concept was 
further discussed in [4]. In the present paper we are going to investigate (nominal) 
semilattices with operators that are not well-behaved. 

An equation is said to be good with respect to a universal algebra A if it is 
a consequence of its own constant consequences together with the equations satisfied 
in A. Then A is well-behaved iff any equation of the appropriate similarity type is 
good with respect to A. In Lemma 1.2 we shall find an effective method to decide 

1 This paper was written at the Technische Hochschule Darmstadt. The work of the first author was 
supported by the Deutsche Forschungsgemeinschaft, the work of the third author was supported 
by the Alexander von Humboldt-Stiftung 
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whether an equation is good with respect to a semilattice with operators. Using 
this criterion, it would be possible to reduce a little the length of several proofs in 
the paper [1], 

In Section 2 we characterize the well-behaved chains with one operator (including 
the infinite ones). 

In Section 3 we describe an effective method to find the lattice represented by 
a given finite nominal chain A with one operator. Moreover, every equational theory 
extending the equational theory of A is effectively described, given its generating 
equations. 

1. Good equations in general sem i la t t ices with operators. 
Let A = (A, A, F) be a semilattice with operators. We denote by F' the set of 

unary term functions of A, i.e., the least monoid containing F and closed under 
meets. Further, we denote by F" the set of unary polynomials of A, i.e., the least 
monoid containing F and all the constants and closed under meets. 

A pair of polynomials / , g is said to be good (with respect to A) if the equation 
f(x) « g(x) belongs to the equational theory generated by the equations satisfied 
in the nominal expansion of A and the equations f(a) « g(a), a € A. If all the 
pairs of polynomials of A are good then A is said to be well-behaved. 

For a pair / , g of polynomials of A we denote by R(f, g) the congruence of A 
generated by the pairs (f(a), g(a)), with a running over the elements of A. 

Lemma 1.1. Let A = (A, A,JP) be a semilattice with operators. A pair of poly
nomials / , g € F" is good with respect to A iff there exist a sequence ho,...,hk 
(k > 0) of polynomials and a sequence (c\,d\),... ,(c*,d*) of ordered pairs belong
ing to R(f,g) such that f = hQ, g = hk and h t_i < ct, lit < dt and /it_i Aeft = ft,Ac, 
for alii €{!,...,k}. 

PROOF : Let f,g be a good pair. Denote by E the equational theory of the 
nominal expansion of A and define a binary relation R on the set of terms (in the 
signature of the nominal expansion) as follows: (u, v) 6 R iff there exist a sequence 
uo,...,Ujt (k > 0) of terms and a sequence ( c i ,d i ) , . . . ,(c*,d*) of ordered pairs 
from R(f,g) such that (u,uo) € E, (v,Uk) € E and whenever i G { 1 , . . . ,k} then 
(u t_i , ut__i A c t) € E, (u t, u t Adi) £ E and (u t_i A dt-, u, A c t) € E. One can easily 
verify that R is a fully invariant congruence containing both E and R(f,g). Since 
f,g is a good pair, we have ( /(#) , g(x)) € R; for u = f(x) and v = g(x) there exist 
terms u, and pairs (c t ,d t) as above; and we can assume that the terms u t contain 
no variables other than x, as they could otherwise be replaced with the terms .s(ut), 
where s is the substitution sending any variable to x. Now the unary polynomials 
hi corresponding to the terms u t do the job. This proves the direct part of the iff 
statement, and the converse follows from 

h0(x) w hQ(x) A c i « h0(x) A d\ « h\(x) A Ci « h\(x) A d\ « /-i(-c) « . . . « hk(x). 

Lemma 1.2. Let A = (A, A,F) be a semilattice with operators containing the 
largest element 1. A pair of polynomials f<,g 6 F" is good iff there exists an element 
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c € A such that c < f(l) A g(l), the elements c,/(l),fl f(l) are all contained in one 
block of R(f, g) and f A c = g A c. 

PROOF : Let f,g be good, so that there exist /it,ct,dj as in 1.1. Denote the 
congruence R(f,g) by ~ . For i € { l , . . . , k } we have h t _i ( l ) = /i t~i(l) A ct ~ 
ht_i(l) A dt = hi(l) A Ci ~ h t( l ) A dt = hi(l). Put c = h0( l ) A • • • A hfc(l), so that 
c ~ / ( l ) A g(l) and c < / ( l ) A g(l). For i € { 1 , . . . , k} we have h t_i A ct A dt = 
ht A Ci A dt and c < ct A dt, so that h t_i A c = hi Ac; consequently, / A c = g A c. 
The converse is clear. • 

Lemma 1.3. Let A = (A, A,F) 6e a well-behaved semilattice with operators. Then 
A contains both the least and the greatest elements. 

PROOF : Put / = id A and let g be an arbitrary constant. Since / , g is a good 
pair, there exist k and h t,c t,d t as in l .L If Card(A) > 1 then k > 1 and we have 
idA = h0 < ci, so that ci is the largest element of A. Put c = ci A- • -AckAd\ A- • »Ad*. 
It follows from h t_i A ct A a*t = h t A ct A dt that / A c = g A c. Hence x A c = g A c 
for all a: € A, i.e., c is the least element of A. • 

2. Well-behaved semilattices with one operator. 
In this section let A = (A, A, / ) be a semilattice with one operator / and a greatest 

element 1. Put F = {/}. The set F' of unary term functions consists of the 
operators fh A • • • A fik with k > 1 and 0 < ix < • • • < i*. The set F" of unary 
polynomials consists of the operators g Ac with g € F' and c € A. 

L e m m a 2 . 1 . Letf g,h € F' 6e fauo unary term functions and x,y € A. Then 
(x,y) € R(g,h) iff there exists a sequence x0,...,xk (k > 0) such that x = x0 , 
y = xk and such that for any i € { l , . . . , k } there are elements a,d € A with 
\xi-i,Xi} = {g(a) Ad,h(a) Ad}. 

PROOF : Denote by R the binary relation defined by (x, y) € R iff there exist 
x0,...,xk as above. It is clear that R C R(g,h) and that R is an equivalence 
relation containing all the pairs (g(x), h(x)). Also, it is clear that (x, y) € R implies 
(x A a, y A a) € R for any a € A. So, it remains to prove that if (x, y) € R 
then (f(x),f(y)) € .R. For this it is sufficient to prove that if a,d € A then 
{fg(a) A d,fh(a) Ad} = {g(b) A d,h(b) A d} for some b € A. Since fg = gf and 
/ h = h / , we can put 6 = / ( a ) . (The fact that / commutes with any element of F' 
follows from F = {/}; notice that 2.1 is not necessarily true when F is arbitrary, 
or when g, h are unary polynomial functions instead of term functions.) • 

Lemma 2.2. Let g,h € F' be two unary term functions and a £ A be a constant. 
If g,h is a good pair then g A a, h A a is a good pair too. 

PROOF : As it easily follows from 1.2, we shall be done if we prove that if (~, y) € 
R(g, h) then (x A a, y A a) 6 R(g A a, h A a). Let (x,y) € R(g, h), so that there 
exist ar0 , . . . , xk as in 2.1. If {~t_i, ~ t} = {g(b) A <f, h(b) A d} then it is clear that 
{xi-i A a, Xi A a} = {g(b) A a Ad, h(b) A a A d}. From this we get (x A a, y A a) 6 
R(9 A a, h A a). • 
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Lemma 2.3. A is well-behaved iff all the pairs g, h of unary term functions such 
that g < h are good. 

PROOF : Only the converse implication needs to be proved, and by [1] it is sufficient 
to show that if p, q £ F", p = g A a, q = h A 6 where g,h £ F' and p < q, then the 
pair p, q is good. Since gAa = gAaAb, we can assume that a < b. It remains to 
show that both the pairs gAa,gAb and gAb,hAb are good. The last pair is good by 
2.2, as it follows from the assumption by [1] that all pairs of unary term functions 
are good. Using 1.2, it is easy to see that also the pair g A a, g A 6 is good. • 

Lemma 2.4. Let g,h £ F' be two unary term functions. If the pair g, h is good 
then the pair fg, fh is good, too. 

PROOF : It is easy to see, using 2.1, that if (x, y) £ R(g,h) then (f(x),f(y)) £ 
R(fg,fh). Now we can apply 1.2 to get the result. • 

Lemma 2.5. A is well-behaved iff all the pairs gt\f%,g such that g = f*1 A- • -A/** € 
F', 0 < i\ < • • • < ik and either i = 0 or i\ = 0 are good. 

PROOF : Let all these pairs be good. It follows from 2.4 that all the pairs gAf\g 
with g £ F' and i > 0 are good. Let g, h £ F' be such that g < h. Then 
g = hhfil A--- A/'* for some «i,. . . , ijt > 0. As the pairs (h A fil A--Afik,hA 
/ n A . . . A / i * - 0 , ( ^ A / i l A - - - A / i * - \ / i A / , ' l A - - - A / i * - 2 ) , . . . , ( / i A / i S ^ ) a r e g o o d , 
the pair (g, h) is good. So, we can apply 2.3. • 

Lemma 2.6. Let A be well-behaved. Then there exist elements c,e £ A with the 
following properties: 

(1) e is the largest fixpoint of f; we have 1 > / ( l ) > / 2 (1) > • • • > /*(1) = e for 
some k > 0. 

(2) For x £ A, x > c iff fk(x) = e for some k. 
(3) f(x) Ac = xAcfor all x £ A. 
(4) f(x) >xAeforallx£ A. 

PROOF : Denote by M the set of the elements a: € A for which there exist i,j > 0 
with /•(») > fj(l). Evidently, M is a filter of A and we have x £ M iff f(x) £ M. 
The relation R defined by (x, y) £ Riff either x, y £ M or x, y £ M is easily seen 
to be a congruence of A containing all the pairs (x, f(x)). Since the pair / , id A 
is good, it follows from 1.2 that there is an element c £ M such that (3) is true. 
By (3) we get c < f(c). Since c £ M, there are nonnegative integers i,j with 
/ ' (c) > fj(l). We have fk(c) < fk(l) for all k and hence fk(c) < / ' ( l ) for all k,l. 
Consequently, f*(c) = / J ( l ) ; the element e = /*(c) = / J ( l ) is clearly the largest 
fixpoint of / and (1) is true. If x > c then f*(x) > /*(c) = e and hence / , + 7(:r) = e. 
Conversely, if fk(x) = e for some k then fk(x) Ac = c; but (3) yields fl Ac = id A Ac; 
hence x A c = c, i.e., x > c. We have proved (2) and it remains to prove (4). Put 
R = R(id, f A id). If x, y are elements such that {x, y} = {a A d, f(a) A a Ad} for 
some a, d then x > e implies y > e. Indeed, if e < a A d then e < a, e = / (e ) < f(a) 
and so e < f(a) A a A d. Now this means, applying 2.1, that if (x,y) £ R then 
x > e iff y > e. In particular, (e, x) £ R implies x > e. On the other hand, it is 
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clear that (e, 1) € R. Consequently, the principal filter generated by e is a block of 
R. Since the pair idA,f A id A is good, by 1.2 there exists an element c' > e with 
i A c ' = f(x) A x Ac' for all x; but then x A e = f(x) A x A e for all x and (4) is 
true. • 

Lemma 2.7. Let h < g be unary term functions and x £ A. Then (x,g(l)) £ 
R(h,g) if and only if there exists a sequence ai > a2 > ••• > an, (n > 1), of 
elements of A such that g(ai) = g(l), x > h(an), and g(ai) > /i(aj_i for all 
i = 2 , 3 , . . . , n. The pair g, h is good if and only if the block of R(g, h) containing 
g(l) has a least element d and g A d = h A d. 

PROOF : The principal ideal generated by g(l) contains all elements g(a) and h(a) 
for any a £ A. It is also closed under meets and under / , hence the block of R(h, g) 
containing g(l) is contained in it. Only the direct implication has to be proved. We 
first describe the block of R(h,g) containing g(l). Set B0 = {#(1)}, and suppose 
that Bj has already been defined for j > 0. Then we set Aj+i = g~~1(Bj} and 
Bj+i = {x < g(l) : x > h(a) for some a £ Aj+i}. All the'sets Bj are filters in 
the principal ideal generated by g(l). By a simple induction on j we can prove 
Bj C Bj+i and Aj C ABj+x for all j > 0. Set B = [jBj. Obviously, B is a subset 
of the block of R(h,g) containing g(l). It is also a filter in {x : x < g(l)}. If 
f(a) £ B for some a £ B, then also f(g(l)) > f(a) belongs to B. So suppose 
/ (g ( l ) ) € B. Then f(g(l)) £ Bk for some k > 0. Hence /(Ho) C Bk. Suppose now 
that /(_?>) C Bj+k for some ; > 0 and take a £ f(Bj+i). Then a = /(&) for some 
b £ Bj+u hence there is c € Aj+i such that b > h(c). Hence g(c) £ Bj and also 
g(f(c)) = f(g(c)) G f(Bj) C Bj+^ thus f(c) G Aj+k+i- Hence f(b) > f(h(c)) = 
h(f(c)) £ Bj+k+i. It proves / ( # ; + ! ) C £;+*+i, and also f(B) C B. If g(a) £ Bj 
for some j , then h(a) £ Bj+X. It completes the proof that B is the block of R(h,g) 
containing g(l). 

Now if x £ B, then x £ Bn for some n > 0. Hence x > h(bn) for some bn £ 
An. Then g(bn) £ B n _ i . By repeating the step with g(bn) replacing x, we find 
an element 6n_i £ An_i such that g(bn) > h(bn-i), etc. After n - 1 steps we find 
an element bi such that g(h) = g(l). Now set aj = biA--Abi, i = l , 2 , . . . , n . Then 
ai > a2 > • • • > an , g(at) = g(l), x > h(bn) > h(an), and g(ai) = g(bt A • • • A bi) > 
h(bi A • • • A 6j_i) A li(6j_i) = /i(a t_i), for i = 2 , . . . , n. 

Finally, let the pair g, h be good. Then there exists d £ B such that g Ad = /i Ad. 
Take an arbitrary x £ B. Then there exists an integer n > 1 and elements a i , . . . , an 

satisfying the conclusions of the first part of the lemma. We get d = g(l) A d = 
g(ai) A d = h(ai) A d < g(a2) A d = h(a2) A d...g(an) A d = h(an) A d < x A d. 
Hence d is the least element of B. m 

Lemma 2.8. Let there exist elements c, e with the four properties formulated in 
2.6. Let g = fH A• • • A/** where ii < • • •<* '* and let i > ik. Then the pair gAf*,g 
is good. 

PROOF : By (4) we have f(x) A x A e = x A e for all x. From this one can 
prove f*(x) A fm(x) A e = fm(x) A e for any j,m such that m < j . But then, 
g(x) A f*(x) A e = g(x) A e. Since i > ik, we get (e,#(l)) G R(g A f*,g) by Lemma 
2.7. Now, it follows from 1.2 that the pair g A f%,g is good. • 
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For the pairs not covered by Lemma 2.8 it seems that there is no uniform condition 
necessary and sufficient for their goodness. 

T h e o r e m 2.9. Let A = (A , A , / ,0 , l ,e ,c) be a semilattice with one operator satis
fying the following conditions: 

(1) /*(_) = e = / (e) for some k>Q, 
(2) fl(c) = e for some I > 0, 
(3) f(x) Ac = xAcfor all x e A, 
(4) f(x) A _ A e = _ A e for all x € A and 
(C) / ' ( _ ) A P(x) A /*(_) = /•(_) A /*(_) for all x G A,i < j < k non-negative 

integers. 

Then A is well-behaved if and only if the pair / , x A / is good. 

PROOF : We prove first that if the pair / , x A f is good, then all pairs f Af3\x A f3 

with / > 1 are also good. Let B = (J_?» be the block of R(f,x A / ) , containing 
/ ( l ) , I?, constructed as in Lemma 2.7., A, = f~l(Bi~.x), D = IJD , D e the block 
of R(f A f3',x A f3) containing / J ( l ) , D, constructed analogously, C, = /"*1(_),_i). 
Since / , x A / is a good pair, there exist an integer n and d G Bn such that f(x)Ad = 
x A f(x) Ad,Bn = By and d is the least element of B. From Lemma 2.7. we know 
that there exist ai > ••• > an , a,- 6 A», t = l , . . . , n , such that f(a0) = / ( l ) , 
f(a%) _! <*i-i A /(a»_i), i = 2 , . . . , n and an A f(an) = d. By an induction on 
i we show that a, A / ( a , ) = a, A / ( l ) for i = l , . . . , n . Indeed, / ( a i ) = / ( l ) 
since ai € Ax. As /(a») > /(_,•_._) A _,•__ and a,_i > a,-, we have a,- A / ( l ) > 
«i A / ( a , ) > a, A a,_,i A / ( a , _ i ) = a,- A a,_i A / ( l ) = a, A / ( l ) . Further we want 
to prove that d A fj(l) € Dn. Since f(at) A f>(ax) = fj(l), we get ai € Cx. And 
since f(a2) A P(a2) > ax A P(at) A P~l(ax A f(ax)) = ax A f(ax) A P~l(ax) A 
P(ax) = ax A P(ai), because of condition (C), we get a2 € C2. By an induction 
on i we get an £ On, hence an A / J ( a n ) € Dn. In the same way as above, we 
show that a, A / J (a j ) = a»- A / J ( l ) for i = 1 , . . . ,n . Indeed, f*(ax) = P(l) since 
f(ax) = / ( l ) . Moreover, a,- A />(1) > a,- A / ' ( a , ) = a,- A / ^ H ^ - i A /(a»_i) = 
aiAa,_i A/ ' - 1 (a<_i)A/ ' (a l_._) = a^Aa^i A/ J (a ,_ i ) = a,Aai_i A / ' ( l ) = a. A/>(1) 
for t = 2 , . . . , n. So we have an A fj(an) = an A f(an) A fj(l) = dA P(l) £ Dn. 
The equation / (_ ) A f*(x) Ad A f*(l) = x A f*(x) Ad A f*(l) holds as a consequence 
of f(x) A d = x A f(x) A d and (C), hence the pair / A / J , x A f' is good. Since 
(1) , . . . ,(4) are equivalent to (1), . . . ,(4) of Lemma 2.6., and because of Lemmas 2.5. 
and 2.8., it is enough to prove that all pairs g = /* A / J , h = x A f3 are good. But 
all the pairs / (_ ) A />(_), x A />; / 2 (_ ) A />(_•), / A / > ; . . . ; /«(_) A />(_), P'1 A /> 
are good by what we have just proved and by Lemma 2.4., hence g, h is good too. • 

Corollary 2.10. A chain with one operator is well-behaved iff it satisfies (1) , . . . ,(4) 
of Theorem 2.9. and either / ( l ) = e or c = e. 

PROOF : If / = x A f is not true, which is the case if c = e, then / ( l ) must be 
contained in the interval [c, e] which is true if and only if / ( l ) = e. • 
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3. Equational theories of a finite chain with one operator. 
In this section let A = (.A, A, / ) be a finite chain with one operator / ; denote 

by 0 the least and by 1 the largest element of A. All terms, term functions and 
polynomials in this section are unary. 

By an equation we shall mean an ordered pair of term functions (rather than 
terms) of the nominal expansion of A, i.e., a pair of polynomials of A. There are just 
two kinds of polynomials: the constants and the polynomials g = / • A p A a where 
i < j and a < p(l) (so that a = g(l)). (The reason for it is that pAf'Af* = / • A/* 
whenever i < j < k.) The polynomials of the second kind will be called composed. 
An equation (a, h) is called trivial if g = h (i.e., if g(x) = h(x) for all a; € A). 

Let I? be a congruence of A. An equation (a, h) is said to be R-valid if (g(x) = 
h(x)) € R for all x € A. 

An element a € A is called R-reduced if there is no b < a with (o, a) € R. For any 
element a denote by a* the only .R-reduced element such that (a^a*) € R. (This 
notation will be used only when R is fixed.) An equation (</, h) is called .R-reduced 
if g(l) = h(l) and g(l) is an R-reduced element. 

By an R-special equation we shall mean a nontrivial R~valid .R-reduced equation 
(a, ft), with a = g(l) == h(l), which is either of the form (a, h) = (/* A p A a, / , + 1 A 
P A a) with * < j or of the form (a, h) = (/•' A /> A a , f A / > + 1 A a) with i < j . 

By an .R-special set we shall mean a set S of R-special equations satisfying the 
following conditions: 

(1) if (p A f> A a , / , + 1 A P A a) € S and a < / ' + 1 ( 1 ) then the equation (/* A 
fi+i ^ tt) p+i /y fj+i ^ a) is either trivial or belongs to 5; 

(2) if (/*+1 A p A a, / i + 1 A / i + 1 A a) € 5 then (/•' A p A a, /* A / > + 1 A a) is either 
trivial or belongs to 5; 

(3) if (/« A / ' A a, / , + 1 A /> A a) € S and (/• A /> A a, / • A / > + 1 A a) € 5 then 
(/*+1 A P A a , / i + 1 A / , + 1 A a) is either trivial or belongs to S; 

(4) if (p A / i + 1 A a, / i + 1 A / i + 1 A a) € S and ( / i + 1 A /'" A a, / i + 1 A / ^ + 1 A a) € S 
then ( / ' A p A a, / , + 1 A P A a) is either trivial or belongs to S\ 

(5) if (/•' A ft A a, /«+i A /> A a) € 5 , then ( / ' + 1 A /^"+1 A 6, / , + 2 A /^'+1 A 6), 
where & = ( / (a) A /'+1(1))*> -3 either trivial or belongs to S; 

(6) if (p A fj A a, p A / > + 1 A a) € 5 , then ( / i + 1 A / > + 1 A 6, / < + 1 A / > + 2 A 6),where 
b = ( / (a) A / i + l ( l ) ) * , is either trivial or belongs to S; 

(7) if ( /• A / J A a, Z ^ 1 A p Aa) € S and 6 < a is an R-reduced element then 
( / ' A P A 6, / , + 1 A P A b) is either trivial or belongs to 5; 

(8) if (p A P A a,/« A / > + 1 A a) € 5 and 6 < a is .R-reduced then (/• A p A 
6, / • A / J + 1 A 6) is either trivial or belongs to S; 

(9) if ( / ' A P A a, /H-i A p A a) € 5 , then ( /< + 1 A / > + 1 A 6, / , + 2 A /^'+1 A o), 
where 6 = (a A /^+ 1(1))*, is either trivial, or belongs to 5; 

(10) if (/• A /> A a, /« A / > + 1 A a) € 5 , then ( / i + 1 A / > + 1 A 6, Z'4"1 A p+2 A 6), 
where 6 = (a A / J + 1 ( l ) ) * , is either trivial, or belongs to 5 . 

In the following let R be a congruence of A and 5 be an R-special set. 
Denote by EQ the union of 5 with the set of trivial equations. 
Denote by Ex the set of the R-valid .R-reduced equations (/»' A P A a, / * A p A a) 

such that i < j , * < J and (fc A p A aj**1 A p A a) £ E0 for any c with 
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min(i, k) < c < max(i, k). 
Denote by E2 the set of the I?-valid .R-reduced equations (/* A / J A a, /* A / * A a) 

such that i < i , i < k and ( / ' A fc A a J* A / c + 1 A a) £ E0 for any c with 
min(i, k) < c < max(i, k). 

Denote by .E3 the set of the I?-valid I£-reduced equations ( / f A / J A a , / f e A / Aa) 
(i < j> k < I) such that either i < k and the equations (/* A / J A a, / l A / A a) 
and (/• A / ' A a, / * A / ' A a) belong to Ex U i£2 or else k < i and the equations 
(/* A fl A a, / * A /> A a) and (/* A fj A a, /* A / J A a) belong to Ej U E2. 

It is clear that both Ki and K2 are equivalences on the set of the composed 
polynomials g such that g(l) is an JR-reduced element. Also, the relation E$ is 
symmetric and reflexive on this set. We need to prove that E% is transitive. For 
this sake, the element a can be considered fixed; we shall write [i,i, k, /] instead of 
(/* A / J A a, / * A / ' A a) € E3. (When this equation belongs to E3, it is obvious 
that it belongs to E\ if j = I and to E2 if i = k.) So, for i < k we have [i,i, k, /] iff 
[»,j,»,/] and[ i , / ,k , / ] . 

It is useful first to realize that if [i , i , i , k] then [i',i,i',fc] for any i' < *'; and if 
[*»i» Kj] then [i,i ' , k,i'] for any j ' > j such that a < f* (1). These two facts follow 
from (1) and (2). 

From (3) and (4) we get: if [*,i,t',i] and [ i , i , i , i ' ] where i < i' and i < j1 then 
[*>i'>*'»i']; ^ d if [*>ii*'»i] a-1^ [*»i»*»i'l where t' < i and i ' < j then [ i , i ' , i ' , i ' ] . 

The pairs t , i can be imagined as points in the plane, and the assertion [i,i, k, /] 
paraphrased as "the points ( t , i ) and (k,/) are connected". Then the definition of 
[i,i, k, /] can be stated as follows: two points are connected iff they are connected in 
both the horizontal and the vertical direction with the third vertex of the left-side 
rectangular triangle which they determine. And the last two remarks imply that 
any two connected points lying on a vertical line can be shifted to the left; any two 
connected points lying on a horizontal line can be shifted up; if in a rectangle the 
left and the bottom vertices are connected then so are the opposite vertices too; 
and if the right and upper vertices are connected then so are the left and bottom 
ones. (Notice that a rectangle can be completed also if the bottom and the right 
vertices are connected; thus the only bad case is when the left and upper vertices 
are connected.) Finally, notice that the relation of connectedness is transitive on 
any vertical as well as on any horizontal line. Taking these remarks into account 
and distinguishing several cases, it is not difficult to see that the relation of connect
edness is transitive on the plane. One can reduce the number of the cases a little 
by taking the following observation also into the account. In order to prove that 
[«,i, fc,/] and [fc,/,p,g] imply [t',i,p,4f], it is sufficient to prove the same under the 
assumption that either k = p or / = q. 

So, we can consider^ the transitivity of E$ to be established. Now denote by E 
the set of the R-valid equations (a, h) such that either one of the polynomials a, h 
is constant or else (g A a, h A a) € -S3 where a = (#(1))* = (h(l))*. Since E$ is an 
equivalence, E is an equivalence on the set of all polynomials; we have R = EC\ A2. 
We are now going to prove that E is an equational theory (i.e., a fully invariant 
congruence on the algebra of polynomials). 

Using (7) and (8), it is easy to prove for i = 1,2,3 that if (g,h) 6 Ei and 
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^ -̂  9(1) = h(l) is an it-reduced element then (g A 6, h A b) £ E%. Consequently, 
( 0 , i ) 6 ^ implies (g Aa.hAa) £ E for any a € A. 

By (1),(2) **-d (7) we get the following: if (a, h) £ 5 and c is a nonnegative 
integer then (9 A fc A 6, /i A fc A 6) € £0, where 6 = (a(l) A / c ( l ) )* . From this we 
get for t as 1,2,3 that (g, h) £ Ei imphes (g A fc A 6, h A fc A 6) € 2£t and we can 
conclude that if (a, h) £ E then (a Afc,hA / c ) € 22 for any c. 

Similarly, using (5) and (6) one can show that (g, h) £ E implies (fg, fh) £ E. 
We have proved that E is a congruence. It is not difficult to verify that this 

congruence is fully invariant using (1), (2), (9), and (10). Clearly, E is just the fully 
invariant congruence generated by the union R U S. 

Conversely, if E is a fully invariant congruence of the algebra of polynomials such 
that JE?n.A2 = R then E is uniquely determined by its intersection with the set of R-
special equations, and this intersection is an it-special set. For example, let us prove 
that (3) is satisfied. .Let ( / ' A / ' A a , / ' + 1 Af'Aa) £ E and ( / ' A / M a , / < A / ' + 1 Aa) € 
E. The first equation gives us (/• A /' '+ 1 A a , / ' + 1 A / J + 1 Aa) £ E; by transitivity 
we get ( / i + 1 A fj A a , / , + 1 A /> + 1 Aa) £ E. The conditions (5) and (6) can be 
proved by applying the congruence property with respect to / , while the conditions 
(9) and (10) are proved by substituting f(x) for x. 

Given a congruence .H, the corresponding interval in the lattice of fully invariant 
congruences of the algebra of polynomials is thus isomorphic to the lattice of R-
special sets. 

Let R, R' be two congruences of A. Further, let S be an U-special set and S' be 
an .R'-special set. We shall write (R, S) < (R\ S') iff R C R! and the following is 
true: whenever (g, h) £ S and a is the least element of A with (a,g(l)) £ R' then 
(g Aa, hAa) is either trivial or belongs to S'. It is easy to see that (R, S) < (iP, S') iff 
the fully invariant congruence generated by R U S is contained in the fully invariant 
congruence generated by R' US'. 

Strictly speaking, equational theories are sets of ordered pairs of terms (in ar
bitrary variables) rather than of polynomials. However, it is easy to see that the 
lattice of equational theories extending the equational theory of the nominal expan
sion of A is isomorphic to the lattice of fully invariant congruences of the algebra 
of polynomials. Summarizing what has been proved and said, we get: 

Theorem 3.1 . Let A = (A, A , / ) be a finite chain with one operator and A' be the 
nominal expansion of A. The lattice of equational theories extending the equational 
theory of A' is isomorphic to the lattice of the ordered pairs (R, S) where R is 
a congruence of A and S is an R-special set, with respect to the ordering described 
above. 

To obtain a picture of the lattice, one can proceed in the following way. First, 
draw a picture of the congruence lattice of A. (This is a distributive lattice; by 
[2], it belongs to the smallest class of lattices containing the two-element lattice 
and closed under finite products and ordinal sums with finite chains placed at the 
top; and any lattice from this class can be represented in this way.) Then replace 
any element of this lattice (it corresponds to a congruence R) with a picture of 
the lattice of .R-special sets; and connect elements in the resulting various blocks 
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according to the above described relation <. 
In the special case when A contains a single fixpoint, there are no R-special 

equations of the form (/' A / J A a, /• A /-?'+1 A a). Consequently, some of the con
ditions (1)-(10) are empty in this case. Most significantly, the conditions (3) and 
(4) are empty. But then, for a given R, the union of any two R-special sets is 
again R-special, which means that the interval in the lattice of equational theories 
corresponding to R is a distributive lattice. We get: 

Corollary 3.2. Let A = (A, A, /) be a finite chain with one operator containing 
a single fixpoint. The lattice of equational theories extending the equational theory 
of the nominal expansion of A is distributive-by-distributive. 

On the other hand, the following example shows that if A contains two fixpoints 
then the lattice of equational theories need not be distributive-by-distributive. 

Example 3.3. Let A be the five-element chain {0,1,2,3,4} with the endomorphism 
/ : (0,1,2,3,4) i-> (1,1,1,2,4). The lattice of equational theories has 54 elements 
and is pictured in Fig. 1. In this picture two elements have the same label iff the 
corresponding equational theories intersect A2 in the same congruence. 

\7 

Fig. 1 
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Example 3.4. Let A be the four-element chain with the endomorphism / : (0,1,2,3) 
i-» (1,1 ,2,2). The lattice of equational theories has 10 elements and is pictured in 
Fig. 2. 

Fig. 2 
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