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Preference numbers and funnel dimension 

J . M . AARTS AND H. VAN MAAREN 

Abstract. The concept of funnel dimension of a topological space is introduced and rela­
tions with existing notions of dimension are established. The concept of funnel dimension 
is related to a problem in mathematical economics. 
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1. Funnel dimension. 
1.1. Considering a set X and a family £ of real-valued functions on X we define 
the lower level topology as the coarsest topology on X such that all functions of £ 
are lower semi-continuous. We shall'be concerned with the question how to relate 
the dimension of such a space with the number of functions in £ . 

Definition 1.2. A funnel in a topological space X is a collection T = {Ft\t € D) 
of closed subsets, indexed by a dense subset D of the real interval [0,1], satisfying 

(i) t < s implies Ft C F3 

(ii) U{Ft\t£D}=X 
(in) Ft = H{Fa\s >t,s€D} for each t 6 D. 

R e m a r k . In the above, the restriction of D being a dense subset of [0,1] rather 
than a dense subset of R is not essential. 

Definition 1.3. The funnel dimension of a topological space X is the least number 
n > 0 for which there are n + 1 funnels ^ i , . . . , / " n + i which together constitute 
a subbase for the closed subsets of X. We shall write / -d imK = n. If no such 
number exists we say that f-dimX = oo. 

It is clear that the funnel dimension is a topological invariant. 

Examp les 1.4. 
a. A singleton has funnel dimension 0. 

b. If X is a T\-space with more than one point, then / - d imK > 1. 
PROOF : If p and q are distinct points of X, there must be subbase elements S 
and T separating p from q and q from p respectively (that is p € S, q £ S and 
q € T, p £ T). Because each funnel is linearly ordered by inclusion, 5 and T cannot 
belong to the same funnel. • 

c. If X is a finite T\ -space with more than one point, then / -d imK = 1. 

d. If J is a non-degenerate interval, /-dim I = 1. Taking the interval [0,1] as an 
example and choosing T\ = {[0,a]|a € (0,1]} and Ti = {[1 — a, l ] |a € (0,1]} we 
see that the funnel dimension of [0,1] is at most 1. 



7/0 J .M. Aarts, H. van Maaren 

Theorem 1.5. The function /-dim is monotone, i.e., if Y is a non-empty subspace 
of a space X, then f-dimY < f-dimX. 

PROOF : The trace of a funnel in X on the subspace Y is a funnel in Y. • 

1.6. With a funnel f o n a space X we may associate a function / : X —• [0,1] 
defined by 

f(x) = inf{t € D\x € Ft}. 

We shall say that / is the level function of T. Clearly, / is lower semi-continuous. 
Conversely, if g : X —• [0,1] is lower semi-continuous and E is a dense subset of 
[0,1], the collection 

{x\g(x) <a} (a£ E) 

is a funnel with level function g. 
The proof of the above statements is quite standard (cf. [5, §19]) and is left to the 

reader. From the above it is clear that the funnel dimension of a space X is the least 
number n satisfying the following condition: there exists a set C of n + 1 real-valued 
functions for which the lower level topology and the given topology coincide. 

T h e o r e m 1.7. For each k € N. we have /-dimR* = k and / -dim A* = k, where 
A* denotes the k-dimensional simplex. 

PROOF : Rk can be embedded in A* and A* can be embedded in R*. So / -
dim(R*) = /-dim(A*) by Theorem 1.5. Using the k -f 1 barycentric coordinate 
functions as level functions, we see that /-dim(A*) < k. 

From the result in the next section the reverse inequality follows. There we shall 
show that ind(Ak) < /-dim(A*), where ind denotes the small inductive dimension. 
It is a well-known fact that ind(Ak) = k (see [4]). • 

1.8. Now we relate the above notions to preference relations. 
A preference relation < on X is a transitive, reflexive and complete relation. Any 
real valued function / on X defines a preference relation by 

(*) x<y iff f(x)<f(y) 

A multiply ordered space X is a set supplied with a (finite) number of preference re­
lations < i , . . . , <jy. The (lower) - preference topology on X is the coarsest topology 
for which the sets 

{x\x<{a} (i<N,a€X) 

are closed. One should notice that the lower level topology is generally finer than 
the corresponding (by means of (*)) lower preference topology. 
This is because of the fact that the images of the level functions might contain 
certain gaps. Therefore, the lower preference number of a topological space, as 
defined in [6], is generally larger than its funnel dimension. Also it should be 
emphasized that the preference number does not behave monotonically. That is, 
subspaces of a given space X might have larger (even infinite) preference numbers. 
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1.9. There is also a certain relation of our notions with some concepts of general 
convexity theory, in particular the concepts of generating degree and directional 
degree which are discussed in [8]. 

2. Relations with the small inductive dimension. 

2.1. In this section we investigate the relation between the funnel dimension and 
the small inductive dimension ind. 

Theorem. For a separable metric space X we have: 

indX < f-dimX < 2 indX + 1 

PROOF : We assume f-dim X = k, indX = n and k < n. Let n be the smallest 
number for which this is possible. Because of Example 1.4 b, we have n > 2. For this 
number n we select a space X with indX = n and k minimal. Let / * i , . . . ,Tk+x be 
funnels such that T = T\ U• • • U,Fjfc+i is a subbase for the closed sets. As indX = n, 
there is a closed set G and a point p £ G such that for every closed set S with G C S 
and p fi 5 , we have indd(5) > n ~~ 1> where d denotes the topological boundary. 
Now let T1 C T be a finite collection satisfying p £ UP and G C UP. 
We must have inddiUT') > n — I. By the (finite) sum theorem and the subset 
theorem of dimension theory (see [4]) we conclude indo\H > n — 1 for some H € Tl. 
Assume H € T\. We shall show that Ti U • • • U .Fjb+i, when intersected with dH, is 
a subbase for dH. 
To this end let B be any closed subset of dH and q £ dH \ B. Let U and V be 
disjoint neighborhoods of q and B in X respectively, with clU D clV = 0. There 
are finitely many elements A\,..., Am of T such that V C A\ U • • • U Am and 
q i A\ U • • • U Am. Define C = U{Aj\l < j < m and Aj <£. H}. Because C D V\H 
and C is closed we must have B C C and also q £ C. 
It follows that none of the Aj used to build C is an element of jF\. Thus we 
have proved that f-dim OH < k — 1, whence it follows that inddH = n — 1. This 
contradicts the minimality of n. To prove the second inequality observe that a space 
X with indX = n can be embedded in R2n+1 . It follows that f-dimK < f-
d i m ( R 2 n + 1 ) < 2 n + l. • 

3 . Relations with the directional dimension. 

3 .1 . We now establish a relation between f-dim and d-dim, introduced by Deak [1]. 
Recall that d-dim X is the smallest n for which there exists a set £ of n real-valued 
functions with the property that the coarsest topology in which all of the functions 
of £ become continuous, coincides with the given topology. 

Our main result is 

Theorem 3.2. If X is separable metricy then / - d imK < rf-dimK. 

PROOF : Assume that d-dimK = n. 
As X can be embedded in Rn (see [1]), it follows that f-dimX < n. • 

We have not been able to decide whether there exists a separable metric space X 
with f-dimX < d-dimK. 
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4. On embeddability into Euclidean space. 
The question of embeddability in Euclidean space cannot be answered in a uni­

form manner. Here we show that Ti-spaces X with f-dimX = 1 can be embedded 
into R and by a counterexample we show that a similar result fails for higher funnel 
dimension. In view of the discussion in 1.8 it would be profitable to have a definite 
answer for the compact case. Sofar, however, this is open. First we prove a lemma. 

L e m m a 4 . 1 . Let X be a T\-space where the topology is generated by the funnels 
Jr\1...,J

r
n+\, with level functions / i , . . . , / „+ - . . Let f(x) = (f\(x),... yfn+t(x)); 

a(x) = f\(x) + • • • + fn+\(x) and TT(X) = f^, for x £ X. 
Then 7r is a closed injection to the space 7r(K). 

PROOF : We first show that 7r is injective. Notice that a(x) = 0 is impossible, if 
X consists of more than one point. Indeed, if a(x) = 0, then fi(x) = 0 for all i. It 
follows that re is a member of all closed sets. If n(x) = 7r(y), then f(x) = fzj)/(y) 
where we may assume that a(x) < a(y). 
Consequently fi(x) < fi(y) for all i < n -f 1, whence x € cl{y}, implying x = y. 
Next we show that 7r is a closed mapping from X to A n D ir(X). 
To this end it is sufficient to demonstrate that the sets n({x\fi(x) < a}) are closed 
subsets of A n O 7r(K), since 7r has already been shown to be injective. 
Let T = {.r|/i(x) < a} and suppose ym is a converging sequence in 7r(T) with 
limit y. Thus y = TT(X) = limym = lim7r(.rm). We have to show x € T. 
By passing to subsequences (using the compactness of A n ) we may assume that all 
sequences fi(xm) converge to a number 7, and that a(xm) converges to a number 7 . 
Thus we have 7r(a:m) converging to y = - (71 , . . . , 7n+i) which means f\(x) = ^--^71 

and since f\(xm) < a we conclude 71 < a, whence f\(x) < Z^p-a. 
Now we show that a(x) < 7 which clearly implies that x € T. 
Assume a(x) > 7. 
Since Hm7r(xm) = 7r(a;), we have lim/i( .rm) = ^fcfi(x), for ail i < n -f 1-
Thus, for m large enough, all fi(xm) < /,-(ar), implying that xm ^ x and xm € cl{x} 
which is a contradiction. • 

Remark. If, in the above, X is assumed to be compact, one can show that the 
mapping F(x) = (f\(x),.. -,fn(x)jl-(f\(x)-\ \~fn(x))) is also a closed injection 
to the space F(X). 

Lemma 4.2. If X is a T\ -space where the topology is generated by two funnels 
?\,T2 with level functions / i , / 2 we have for all x,y € X: 

M*)<fi(y) iff f2(x)>f2(y) 

PROOF : If f\(x) < f\(y) and f2(x) < f2(y) we have x 7- y and x G c % } , which 
is impossible. • 

4 .3 . Under the conditions of Lemma 4.2 we now consider a set of the form T = 
{x € X\h{x) > a}. 
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If a = f\(y) for some y we have, by the above lemma, T = {x € X\f2(x) < f2(y)} 
which is closed. Suppose that a £ im ( / i ) . 
Put 0 = sup{/i(x) | / i (x) < a ,x € X} and 7 = inf{/i(*)|/i(ar) > a,a: € X}. 
If /9 ^ im (J^) there exists a sequence / i (y n ) approaching /?. We conclude that 
T = nn£N{a> 6 K|/i(x) > / i ( y n ) } , which is closed by the previous lemma. 
If 7 G im (/1) we see that T = {x\f\(x) > 7,x G K}, again a closed set by the 
same arguments. 
The case left to consider is the case that fi = / i (p) , for some p and 7 ^ im (/1), 
where 7 can be approximated by a sequence f\(zn) from the above. 
Now consider the funnel T\. By applying the defining properties of a funnel we see 
that Fy = nn€NK/i(zn)- If KB is a proper subset of F 7 there exists x £ X with 
x £ Fy and x $ Fp which means / i (x) < 7 and / i (x) > /5, a contradiction. Thus 
Ff^p) = nn€N-^/i(z„)> whence by filling the gap (,#,7] by means of a function /{ 
defined by 

' / i W i f / x ( x ) > a 

i W + 7 - ^ i f / i ( x ) < a 
we obtain a level function f[ of .Fi, where only the indexing differs from that of the 
original funnel. The closed sets defined by T remain unchanged. This observation, 
which can be found in a similar form in [2], enables us to prove the following result. 

Theorem 4.4. For a T\-space X, / - d i m K <l iff X is embeddable in R. 

PROOF : Let T\ and T2 be the funnels on the Ti-space X which generate the 
topology and f\ and f2 the level functions. We assume that the indexing of both 
Ti and T2 is such, that no gaps of the form (^,7] occur in the images of /1 and f2. 
See [2] for a detailed proof. By the argument of 4.3 it is clear that /1 and f2 are in 
fact both upper semi-continuous, and hence continuous. Therefore, the mapping ir 
becomes continuous and hence an embedding of X into the one-dimensional simplex. 

• 

4.5. The next example shows that for higher funnel dimensions embeddability into 
Euclidean space is not generally possible. Let Q denote the set of rationals. Let 
X = [0,1], / i (x ) = x,f2(x) = 1 — x and /3 be defined by 

* < • > - { " 

\ 0 else , 

forx 6 [0,1]. 
Now the lower level topology generated by this set of functions is the topology 

generated by the Euclidean topology and the extra open set Q. This topology is 
a non regular Hausdorff topology, which is not embeddable into Euclidean space. 
Clearly, by the above theorem, it has funnel dimension 2. Notice that the topology 
discussed here is in fact a lower preference topology as well. 
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