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ARCH. MATH. 1, SCRIPTA FAC SCL NAT. UJEP BRUNENSIS 

XII: 25—30, 1976 

ON THE BOUNDEDNESS OF A SOLUTION 
OF A SYSTEM OF NON-LINEAR 

DIFFERENTIAL EQUATIONS 

PAVEL SOLTYS, KoSice 
(Received September 26, 1974) 

Theorem 2 in [1] gives sufficient conditions for the component x(t) or y(t) of the 
solution (x, y) of a system 

x' +fo(t)fi(x)f2(y)~0 
y' +go(t)gi(x)g1(y) = 0 

to be bounded on < a, oo); this theorem is then generalized to give Theorem 3, which 
deals with boundedness conditions for x(t) or y(t) where (x, y) is a solution of the 
system 

x'+fo(t)fi(x)f2(y)+f(t,x,y) = 0 
V + go(*)gi(x)g2(y) + g(t, x, y) = 0. 

The purpose of the present paper is the investigation of the boundedness of solu
tions of a system having the form 

x9 + A (t, x)f2(y) + f(t, x,y) = 0 
( yf + gi(t, x) g2(y) + g(t, x, y) = 0, 

where f(t, x), f2(y), f(t, x, y), gx(t, x), g2(y) and g(t, x, y) are continuous for every 
t ^ to, xe(—oo, oo), ye (—oo, oo) with t0e(— oo, oo). 

Consider first the following system of non-linear differential equations 

x' +fl(t,x)f2(y) = 0 
( ) y' +gi(t,x)g2(y)~0. 

« y 

Let Hx(t, x) = | h^t, s) As, H2(y) = J h2(s) As where 
o o 

u (t *\ - **(*'x) h (v\ - fl^ 

and 
dhi(t, x) 

~~~~1~~~~ 

are continuous functions for every t ^ t0, x e (—oo, oo), y e (— oo, oo). 
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We have 

Theorem 1. Suppose that for all ye (-co 9 oo) 

H2(y) <; k2 < oo 

and suppose that for every continuously differentiable function u(t) on </0, i)9 i S + <*> 
which is unbounded as t -* f _ there exists a sequence {/J^i, such that f, -* *L A/M/ 

^ ^ i ( ' i ^ ( 0 ) dHx(tl9u(*d t < t < t 

(3) gj - g ^ f 0 S ' - ' * -
Moreover, let 

(4) lim Hx(t09x) = Hx g + <*>. 
|x|-oo 

_TAe/i jbr eirary solution (x(t)9 y(t)) of (2) _?i/cA /Aa* 

(5) * 0 = #i(/o, x(t0)) - i72(y(/o)) + Hi < Hi, 

*(/) is bounded for t ^ /0. 
Proof. Let the solution (JC(/), y(t)) of (2) exist on </0, i)9 i rg + 00; suppose that 

it satisfies the condition (5) and that lim sup | x(t) | % + 00. Then there exists a se-

quence {/,}£lf /| -> f~ for / -* 00 such that lim | x(tt) | = +00. From (2) we see 
i-*oo 

that 
At(/, x(t)) x'(t) = A2(X0) / ( / ) for / e </0, f). 

By integrating this, we get, for all / e </0, i) 

(6) Hx(t9 x(t)) = Hx(t09 x(t0)) - H2(y(t0)) + #2(><0) + 

+ ,'___£_!_.*, f aяt(., 
J ć)s 
-0 

and therefore 

(7) //.(^^ '̂o + JM^td, * 
to 

For a given sequence {*.}(_ j such that f, -» f_ for i -* oo (7) yields, with the help of 
(3) (putting u(r) = x(t)) 

to 

*• #o + _?!(/„ x(r,)) - ff.(/0, X(ts)), 
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or 

# i ( ' o , 4 t i ) ) £ # 0 . 

For i -^ oo we can use this, together with (4), to obtain a contradiction to (5). 

Theorem 2. Suppose that9 for every t^ t0 and x e (— oo, oo), 

(8) - oo < kt £ HiO, x)9 lEljhA g a(,) 

and let 

(9) lim H2(y) = -H2 ^ -oo. 

v 
oo 

(10) I a(0df=-_4< oo, 

then for any solution (x(t)9y(t)) of (2) such that 

(11) K0* = #i( 'o, x(t0)) - H2(y(t0)) + A-kt<H29 

y(t) is bounded for t^t0. 
Proof. Suppose that the solution (x(t)9 y(t)) of (2) is defined on <t0, f), i <J +• oo 

and that (11) holds. We shall prove that in that case y(t) is bounded on <f0, 0- Let 
lim sup | y(t) \ = +-oo. Owing to (8) and (10), (6) yields: 

-H2(y(t)) JS K*. 

Consider a sequence {ti}i--i such that tf -• f_ for i -* oo and lim | y(tt) \ = +- oo. 
f->oo 

Now if we put t = tt and let i -+ oo, we can use (9) to obtain a contradiction to the 
assumption (11). 

Remark 1. If Hx = +• oo or H2 = + oo in (4) or (9) respectively, then evidently 
for any solution (x(t)9 y(t)) of (2) x(t) or y(t) is bounded for all t ;> t0 from the domain 
of the solution. 

Theorem 3. Under the assumptions of Theorem 2, let H2 = +-oo, <x(t) <£ 0 a«rf 
suppose that for all y e (— oo, oo) 

H2(y)^k2 < +-00. 

//*/<7r o«y sequences {t^fL i, {*i}£i -?e/cA that for i -* oo tf -» oo a/rd I *i I -» oo. 

(12) lim.flri(ti,Xi)-= +-00, 
J-*eo 

then, for any solution (x(t)9 y(t)) of(2)9 \ x(t) \ +• | y(t) \ is bounded for t £ t0, 
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Proof. Suppose that a solution (x(t)9 y(0) exists on <t0, i)91 g + co. The bounded-
ness of y(t) for te(t09 i) is ensured by Theorem 2. Suppose now that x(t) is unbounded 
for t r* iL, i.e. that there exists a sequence { t j£ i , t* -* f- for i -> oo, such that 
lim | x(t() | -= +oo. Further let {/i}*--! be an arbitrary sequence such that t% -> co 

for i -+ oo and for all /, tt <; ^. Since a(t) g 0, we have 

^ i ^ , ^ ) ) ^ ^ ^ , ^ ) ) , 

and we can use this and the relation (7) to get 

For i -* oo, this contradicts the hypothesis (12). Thus for t e <t0, i) \ x(t) \ + \ y(t) \ is 
bounded. 

Remark 2. The equation 
x" + f(t9 x) g(x') = 0 

is a special case of (2). Theorems 18 and 19 of [12] deal with the boundedness of 
solutions of this equation. 

Now let us consider the system (1). If (JC(0, y(0) is a solution of (1) which exists on 
<r0, 0, i £ +oo, then for te(t09 i) (1) yields: 

hl{t9x(t))x'(t) = h2(y(t))y'(t) + 
+ g(t, x(t)9 y(t)) h2(y(t)) - f(t9 x(t)9 y(t))ht(t9 x(t)) 

which means that 
Ht(t9 x(t)) -= H2(y(t)) + Hx(t09 x(t0)) + 

t 

+ 
« * 

JÊЩA Lds + J[g(S,x(S),Ks))lt2(Xs)) - /(*, ^).>-(s))Ai(s,x(S))]dS. 

It is easy to see from the proofs of Theorems 1 to 3 that the following theorems hold: 
Theorem 1'. Suppose that for all t *> t09 xe(— oo, oo), y e (—oo, oo) 

g(t9 x9 y) h2(y) - f(t9 x9 y) ht(t9 x) ^ p(t) 

and let 
OU 

Í P(t)dt=* B < +oo. 

If the hypotheses of Theorem 1 hold9 then for any solution (x(t)9 y(t)) of (I) such that 

#i('o, *('o)) - H2(y(t0)) + k2 + B<ffi 

x(t) is bounded for t^> t0. 
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fill ff y\ 

Theorem 2'. Suppose that the hypotheses of Theorem 2 hold, with * ' ; <J «(0 

and the assumption (10) replaced by the assumptions 

8Hft'
X) + g(t, x, y) h2(y) - /(., x, y) /..(., x) g y(.) 

and 
oo 

y(t)dt=* C < +oo Һ 
to 

respectively. 
Then for any solution (x(t),y(t)) of (I) such that 

#i(to, *('o)) - H2(y(t0)) + C-k1<H2 

y(t) is bounded for t ^ t0. 
Theorem 3'. Suppose that the hypotheses of Theorem 3 hold, with the assumption 

a(t) ^ 0 replaced by y(t) g 0. Then for any solution (x(t), y(t)) of (I) | x(t) | + | y(t) | 
is bounded for t ^ t0. 
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