Archivum Mathematicum

Pavol Šoltés

On the boundedness of a solution of a system of non-linear differential equations

Archivum Mathematicum, Vol. 12 (1976), No. 1, 25--29

Persistent URL: http://dml.cz/dmlcz/106923

Terms of use:

© Masaryk University, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project $D M L-C Z:$ The Czech Digital Mathematics
Library http://project.dml.cz

ON THE BOUNDEDNESS OF A SOLUTION OF A SYSTEM OF NON-LINEAR DIFFERENTIAL EQUATIONS

PAVEL ŠOLTÉS, Košice
(Received September 26, 1974)
Theorem 2 in [1] gives sufficient conditions for the component $x(t)$ or $y(t)$ of the solution (x, y) of a system

$$
\begin{array}{r}
x^{\prime}+f_{0}(t) f_{1}(x) f_{2}(y)=0 \\
y^{\prime}+g_{0}(t) g_{1}(x) g_{2}(y)=0
\end{array}
$$

to be bounded on $<a, \infty$); this theorem is then generalized to give Theorem 3, which deals with boundedness conditions for $x(t)$ or $y(t)$ where (x, y) is a solution of the system

$$
\begin{aligned}
x^{\prime}+f_{0}(t) f_{1}(x) f_{2}(y)+f(t, x, y) & =0 \\
y^{\prime}+g_{0}(t) g_{1}(x) g_{2}(y)+g(t, x, y) & =0
\end{aligned}
$$

The purpose of the present paper is the investigation of the boundedness of solutions of a system having the form

$$
\begin{align*}
x^{\prime}+f_{1}(t, x) f_{2}(y)+f(t, x, y) & =0 \\
y^{\prime}+g_{1}(t, x) g_{2}(y)+g(t, x, y) & =0 \tag{1}
\end{align*}
$$

where $f_{1}(t, x), f_{2}(y), f(t, x, y), g_{1}(t, x), g_{2}(y)$ and $g(t, x, y)$ are continuous for every $t \geqq t_{0}, x \in(-\infty, \infty), y \in(-\infty, \infty)$ with $t_{0} \in(-\infty, \infty)$.

Consider first the following system of non-linear differential equations

$$
\begin{align*}
x^{\prime}+f_{1}(t, x) f_{2}(y) & =0 \\
y^{\prime}+g_{1}(t, x) g_{2}(y) & =0 \tag{2}
\end{align*}
$$

Let $H_{1}(t, x)=\int_{0}^{x} h_{1}(t, s) \mathrm{d} s, H_{2}(y)=\int_{0}^{y} h_{2}(s) \mathrm{d} s$ where

$$
h_{1}(t, x)=\frac{g_{1}(t, x)}{f_{1}(t, x)}, \quad h_{2}(y)=\frac{f_{2}(y)}{g_{2}(y)}
$$

and

$$
\frac{\partial h_{1}(t, x)}{\partial t}
$$

are continuous functions for every $t \geqq t_{0}, x \in(-\infty, \infty), y \in(-\infty, \infty)$.

We have

Theorem 1. Suppose that for all $y \in(-\infty, \infty)$

$$
H_{2}(y) \leqq k_{2}<\infty
$$

and suppose that for every continuously differentiable function $u(t)$ on $\left\langle t_{0}, \bar{t}\right), \bar{t} \leqq+\infty$ which is unbounded as $t \rightarrow \bar{t}_{-}$there exists a sequence $\left\{t_{i}\right\}_{i=1}^{\infty}$, such that $t_{i} \rightarrow \bar{t}_{-}$and

$$
\begin{equation*}
\frac{\partial H_{1}\left(t_{1}, u(t)\right)}{\partial t} \leqq \frac{\partial H_{1}\left(t_{1}, u\left(t_{i}\right)\right.}{\partial t} \quad t_{0} \leqq t \leqq t_{i} \tag{3}
\end{equation*}
$$

Moreover, let

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} H_{1}\left(t_{0}, x\right)=H_{1} \leqq+\infty \tag{4}
\end{equation*}
$$

Then for every solution $(x(t), y(t))$ of (2) such that

$$
\begin{equation*}
K_{0}=H_{1}\left(t_{0}, x\left(t_{0}\right)\right)-H_{2}\left(y\left(t_{0}\right)\right)+k_{2}<H_{1}, \tag{5}
\end{equation*}
$$

$x(t)$ is bounded for $t \geqq t_{0}$.
Proof. Let the solution $(x(t), y(t))$ of (2) exist on $\left\langle t_{0}, \bar{t}\right), \bar{t} \leqq+\infty$; suppose that it satisfies the condition (5) and that $\lim \sup |x(t)|=+\infty$. Then there exists a sequence $\left\{t_{i}\right\}_{i=1}^{\infty}, t_{i} \rightarrow \bar{t}_{-}$for $i \rightarrow \infty$ such that $\lim _{i \rightarrow \infty}\left|x\left(t_{i}\right)\right|=+\infty$. From (2) we see that

$$
h_{1}(t, x(t)) x^{\prime}(t)=h_{2}(y(t)) y^{\prime}(t) \quad \text { for } \quad t \in\left\langle t_{0}, \bar{t}\right)
$$

By integrating this, we get, for all $t \in\left\langle t_{0}, \bar{t}\right)$

$$
\begin{gather*}
H_{1}(t, x(t))=H_{1}\left(t_{0}, x\left(t_{0}\right)\right)-H_{2}\left(y\left(t_{0}\right)\right)+H_{2}(y(t))+ \tag{6}\\
\quad+\int_{t_{0}}^{t} \frac{\partial H_{1}(s, x(s))}{\partial s} d s
\end{gather*}
$$

and therefore

$$
\begin{equation*}
H_{1}(t, x(t)) \leqq K_{0}+\int_{i_{0}}^{t} \frac{\partial H_{1}(s, x(s))}{\mathrm{d} s} \mathrm{~d} s \tag{7}
\end{equation*}
$$

For a given sequence $\left\{t_{i}\right\}_{i=1}^{\infty}$ such that $t_{i} \rightarrow \bar{t}_{-}$for $i \rightarrow \infty$ (7) yields, with the help of (3) (putting $u(t)=x(t)$)

$$
\begin{aligned}
& H_{1}\left(t_{i}, x\left(t_{i}\right)\right) \leqq K_{0}+\int_{i_{0}}^{t_{i}} \frac{\partial H_{1}\left(s, x\left(t_{i}\right)\right)}{\partial s} \mathrm{~d} s= \\
& =K_{0}+H_{1}\left(t_{i}, x\left(t_{i}\right)\right)-H_{1}\left(t_{0}, x\left(t_{i}\right)\right)
\end{aligned}
$$

or

$$
H_{1}\left(t_{0}, x\left(t_{i}\right)\right) \leqq K_{0}
$$

For $i \rightarrow \infty$ we can use this, together with (4), to obtain a contradiction to (5).
Theorem 2. Suppose that, for every $t \geq t_{0}$ and $x \in(-\infty, \infty)$,

$$
\begin{equation*}
-\infty<k_{1} \leqq H_{1}(t, x), \quad \frac{\partial H_{1}(t, x)}{\partial t} \leqq \alpha(t) \tag{8}
\end{equation*}
$$

and let
(9)

$$
\lim _{|y| \rightarrow \infty} H_{2}(y)=-H_{2} \geqq-\infty
$$

If

$$
\begin{equation*}
\int_{i_{0}}^{\infty} \alpha(t) \mathrm{d} t=A<\infty, \tag{10}
\end{equation*}
$$

then for any solution $(x(t), y(t))$ of (2) such that

$$
\begin{equation*}
K_{0}^{*}=H_{1}\left(t_{0}, x\left(t_{0}\right)\right)-H_{2}\left(y\left(t_{0}\right)\right)+A-k_{1}<H_{2} \tag{11}
\end{equation*}
$$

$y(t)$ is bounded for $t \geqq t_{0}$.
Proof. Suppose that the solution $(x(t), y(t))$ of (2) is defined on $\left\langle t_{0}, \bar{t}\right), \bar{t} \leqq+\infty$ and that (11) holds. We shall prove that in that case $y(t)$ is bounded on $\left\langle t_{0}, \bar{t}\right)$. Let $\lim \sup |y(t)|=+\infty$. Owing to (8) and (10), (6) yields: $t \rightarrow t$ -

$$
-H_{2}(y(t)) \leqq K_{0}^{*}
$$

Consider a sequence $\left\{t_{i}\right\}_{i=1}$ such that $t_{i} \rightarrow \bar{t}_{-}$for $i \rightarrow \infty$ and $\lim _{t \rightarrow \infty}\left|y\left(t_{i}\right)\right|=+\infty$. Now if we put $t=t_{i}$ and let $i \rightarrow \infty$, we can use (9) to obtain a contradiction to the assumption (11).

Remark 1. If $H_{1}=+\infty$ or $H_{2}=+\infty$ in (4) or (9) respectively, then evidently for any solution $(x(t), y(t))$ of (2) $x(t)$ or $y(t)$ is bounded for all $t \geqq t_{0}$ from the domain of the solution.

Theorem 3. Under the assumptions of Theorem 2, let $H_{2}=+\infty, \alpha(t) \leqq 0$ and suppose that for all $y \in(-\infty, \infty)$

$$
H_{2}(y) \leqq k_{2}<+\infty
$$

If for any sequences $\left\{t_{i}\right\}_{i=1}^{\infty},\left\{x_{i}\right\}_{i=1}^{\infty}$ such that for $i \rightarrow \infty t_{i} \rightarrow \infty$ and $\left|x_{i}\right| \rightarrow \infty$

$$
\begin{equation*}
\lim _{i \rightarrow \infty} H_{1}\left(t_{i}, x_{i}\right)=+\infty \tag{12}
\end{equation*}
$$

then, for any solution $(x(t), y(t))$ of (2), $|x(t)|+|y(t)|$ is bounded for $t \geqq t_{0}$.

Proof. Suppose that a solution $(x(t), y(t))$ exists on $\left\langle t_{0}, \bar{t}\right), \bar{t} \leqq+\infty$. The boundedness of $y(t)$ for $t \in\left\langle t_{0}, \bar{t}\right)$ is ensured by Theorem 2. Suppose now that $x(t)$ is unbounded for $t \rightarrow \bar{t}_{-}$, i.e. that there exists a sequence $\left\{t_{i}\right\}_{i=1}^{\infty}, t_{i} \rightarrow \bar{t}_{-}$for $i \rightarrow \infty$, such that $\lim _{i \rightarrow \infty}\left|x\left(t_{i}\right)\right|=+\infty$. Further let $\left\{\tilde{t}_{i}\right\}_{i=1}$ be an arbitrary sequence such that $\tilde{t}_{i} \rightarrow \infty$ for $i \rightarrow \infty$ and for all $i, t_{i} \leqq \tilde{t}_{i}$. Since $\alpha(t) \leqq 0$, we have

$$
H_{1}\left(\tilde{t_{i}}, x\left(t_{i}\right)\right) \leqq H_{1}\left(t_{i}, x\left(t_{i}\right)\right)
$$

and we can use this and the relation (7) to get

$$
H_{1}\left(\tilde{t_{i}}, x\left(t_{i}\right)\right) \leqq H_{1}\left(t_{i}, x\left(t_{i}\right)\right) \leqq K_{0}
$$

For $i \rightarrow \infty$, this contradicts the hypothesis (12). Thus for $t \in\left\langle t_{0}, \bar{t}\right)|x(t)|+|y(t)|$ is bounded.

Remark 2. The equation

$$
x^{\prime \prime}+f(t, x) g\left(x^{\prime}\right)=0
$$

is a special case of (2). Theorems 18 and 19 of [12] deal with the boundedness of solutions of this equation.

Now let us consider the system (1). If $(x(t), y(t))$ is a solution of (1) which exists on $\left\langle t_{0}, \bar{t}\right), \bar{t} \leqq+\infty$, then for $t \in\left(t_{0}, \bar{t}\right)$ (1) yields:

$$
\begin{gathered}
h_{1}(t, x(t)) x^{\prime}(t)=h_{2}(y(t)) y^{\prime}(t)+ \\
+g(t, x(t), y(t)) h_{2}(y(t))-f(t, x(t), y(t)) h_{1}(t, x(t))
\end{gathered}
$$

which means that

$$
\begin{gathered}
H_{1}(t, x(t))=H_{2}(y(t))+H_{1}\left(t_{0}, x\left(t_{0}\right)\right)+ \\
+\int_{i_{0}}^{t} \frac{\partial H_{1}(s, x(s))}{\partial s} \mathrm{~d} s+\int_{i_{0}}^{t}\left[g(s, x(s), y(s)) h_{2}(y(s))-f(s, x(s), y(s)) h_{1}(s, x(s))\right] \mathrm{d} s .
\end{gathered}
$$

It is easy to see from the proofs of Theorems 1 to 3 that the following theorems hold:
Theorem 1^{\prime}. Suppose that for all $t \geqq t_{0}, x \in(-\infty, \infty), y \in(-\infty, \infty)$

$$
g(t, x, y) h_{2}(y)-f(t, x, y) h_{1}(t, x) \leqq \beta(t)
$$

and let

$$
\int_{t_{0}}^{\infty} \beta(t) \mathrm{d} t=B<+\infty
$$

If the hypotheses of Theorem 1 hold, then for any solution $(x(t), y(t))$ of (1) such that

$$
H_{1}\left(t_{0}, x\left(t_{0}\right)\right)-H_{2}\left(y\left(t_{0}\right)\right)+k_{2}+B<H_{1}
$$

$x(t)$ is bounded for $t \geqq t_{0}$.

Theorem 2'. Suppose that the hypotheses of Theorem 2 hold, with $\frac{\partial H_{1}(t, x)}{\partial t} \leqq \alpha(t)$ and the assumption (10) replaced by the assumptions

$$
\frac{\partial H_{1}(t, x)}{\partial t}+g(t, x, y) h_{2}(y)-f(t, x, y) h_{1}(t, x) \leqq \gamma(t)
$$

and

$$
\int_{i_{0}}^{\infty} \gamma(t) \mathrm{d} t=C<+\infty
$$

respectively.
Then for any solution $(x(t), y(t))$ of (1) such that

$$
H_{1}\left(t_{0}, x\left(t_{0}\right)\right)-H_{2}\left(y\left(t_{0}\right)\right)+C-k_{1}<H_{2}
$$

$y(t)$ is bounded for $t \geqq t_{0}$.
Theorem 3'. Suppose that the hypotheses of Theorem 3 hold, with the assumption $\alpha(t) \leqq 0$ replaced by $\gamma(t) \leqq 0$. Then for any solution $(x(t), y(t))$ of $(1)|x(t)|+|y(t)|$ is bounded for $t \geqq t_{0}$.

REFERENCES

[1] W. J. Coles: Boundedness of solutions of two-dimensional first order differential systems, Bolletino U. M. I., S. IV, No 2 (225-231), 1971.
[2] P. Šoltés: On certain properties of the solutions of a non-linear differential equation of the second order, Arch. Math. 2, VII, 47-63, 1971.
P. Soltés

04154 Košice, Komenského 14
Czechoslovakia

