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POLARS ON PARTIALLY ORDERED GROUPS 

JIŘÍ RŮŽIČKA, Brno 
(Received June 16, 1975) 

In the present study the relation of disjunctivity on partially ordered groups 
(denoted by the symbol Q) is defined which, in case of a lattice-order of a group, is 
equivalent to the usual disjunctivity on 1-groups (see [3], [6], [7]). The system of all 
g-polars on any partially ordered group is a complete Boolean lattice. At the end 
of the study, an example is given to prove that the g-polars generally are lacking some 
of the other important properties of the polars on 1-groups. 

In § 1 definitions are given of some binary relations that are associated with the 
theory of disjunctivity on partially ordered groups and their mutual relation is 
examined. In § 2 the definition of an absolute of an element is generalized which has 
been introduced by L. Fuchs ([2]) for the case of a directed group, for any partially 
ordered group and some of the properties of these absolutes are proved here. In § 3 
a new disjunctivity Q on partially ordered groups is defined on the basis of the results 
given in the preceding paragraphs and is compared with the disjunctivities contained 
in § 2. § 4 is devoted to the study of g-polars on partially ordered groups. It is shown 
here that the system of all g-polars forms a complete Boolean lattice on a partially 
ordered group and an example of a group is given whose g-polars generally are 
neither its subgroups nor convex subsets. 

By the symbol G we denote throughout the present study-unless stated otherwise— 
a partially ordered group, i.e., a group whose set of elements is partially ordered and 
from g = h(g, heG) follows g + x = h + x and x + g S x + h for all xeG. 
Additive notations will be used for group operations, and group elements will be 
denoted by small letters of the alphabet everywhere in the text. 

If B is a non-empty subset of a group G, the following denotation will be introduced: 
L(B) = {geG:g = b for allbeB), U(B) = {g e G: g = A for allbe B). IfB = 
= {b, c,...}, then we write L(B) = L(b, c,...) and U(B) = U(b, c,...). If By C, D s 
g Gand B, C # 0, we denote B + C = {b + c: beB, ceC}, ~ C = {-c: ceC}9 

B - C = B + (-C) and define D + 0 = 0 + D = 0, - 0 = 0. 
The positive cone of a partially ordered group G, i.e., the set {g e G: g «£ 0} is 

denoted by the symbol P(G) or P. Lattice-operations are denoted by the symbols A , 
^ (the infimum) and v, V (the supremum). 
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Let G be a lattice-ordered group (an 1-group). Then an absolute of an element 
ge G is defined as the supremum of elements g and — g9 elements g9 heG being 
called disjunctive (denoted as g 1 A) when the infimum of their absolutes equals zero. 
The basic properties of absolutes of elements and the relation of disjunctivity on 
1-groups are given in [3], Chapter V. 

The Definition of a Polar. Let a symmetric binary relation co be defined on a set 
Q # 0, and let 8 # M g Q. The set {qeQ: mcoqfor all m e M} is called a polar of the 
set M with respect to the relation co or, briefly, an co-polar of the set M9 and is denoted 
by the symbol M™. 

The properties of polars on 1-groups with regard to the disjunctivity L are examined 
in the studies [1], [3], [6], and [7]. The system of all ±-polars forms a complete 
Boolean lattice on an 1-group G9 and every ±-polar is a convex 1-subgroup of G. 

If a, p are binary relations on a set M9 then j? § a means that from xfiy follows 
x(xy(x9 y 6 M). 

All other denotations and notions have been used in accordance with [3] and [4J. 

§1 

In this paragraph, definitions of some disjunctivities on partially ordered groups 
are given and their comparisan carried out. 

Every symmetric binary relation on a non-empty subset of a partially ordered 
group is called disjunctivity. 

On consulting the literature quoted below in the list, I encountered the definitions 
of disjunctivity as follows. They are designated a, e, <5, and defined thus: 

(1) g9heG; then g<xh when P + g + A = (P + g) n (P + A); 
(2) g9he P(G); then geh when g A A = 0; 
(3) g9 heG; then gdh when there exist r, seP(G) so that 

r =• g s= ~"r> s ^ A = — s, and rAS = 0. 

The first definition is given in [5], the remaining two in [8]. Let us remark that the 
expression as under definition (1) may be replaced by an equivalent expression P = 
= (P ~ g) C> (P — h)9 since P is an invariant set in G. 

1.1. Lemma. For elements g9 heG holds P = (P - g) n (P — A) if and only if 
gAA = 0. 

Proof. Let P = (P - g) n (P - A). Then g9 A = 0, and if u is any lower bound 
of these elements, it follows from u <* g,h that 0 «£ -w + g9 — w + A, so that —H = 
» ( -«+*) - £ = (-K+A) - A e ( P - g ) n ( P - A) =P , i .e. ,a = 0. ThusgAA = 
= 0. Let us suppose, vice versa, that g A A = 0. If u e (P — g) n (P - A) is any element 
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whatsoever, it evidently holds that u + g, u + A eP, so that — u <[ g, A, and, since 
£AA = 0, - U ^ O and ueP. Hence (P - g) n (P — A) g P. The inverse inclusion 
readily follows from the fact that from peP follows evidently p + g, p + he P. 

It is obvious from the lemma that the definition of the disjunctivity a is, in the 
case of an 1-group G, equivalent on the set P(G) to the definition of the disjunctivity 1. 
In addition to this, even the relation between the disjunctivities a and e is clear now, 
because only elements from P(G) may be in the relation a. 

It may be further easily established that the relation 8 on an 1-group is equal to the 
disjunctivity 1, and it may be shown that, in the case of a partially ordered group (?, 
for elements g, heP(G), geh holds if and only if g8h ([8], page 88). 

If we denote by lp, 8P the restriction of the relations 1 and 5 to the positive 
cone P(G), then the following proposition holds: 

1.2. Propozition. If G is a partially ordered group, then a = e = 8P g 8. If G is 
an l-group, then 8=1 and a = ±p = e. 

§2 

Absolutes of elements on directed groups are defined in double way in [2], their 
relation to absolutes defined on 1-groups is shown and some of their properties shown. 
It may be shown that absolutes of the two types of [2] will retain their basic properties 
even when their definitions are extended to any partially ordered group. We shall 
further deal with an extension of one of these definitions and shall later on make 
use of the results obtained in defining and studying a new relation of disjunctivity 
of partially ordered groups. 

2.1. Lemma. Let X, Y be non-empty subsets of a partially ordered group G, and let 
g,heG be any elements. The folllwing relations hold: 

(A) -C/(X) = L(-X) ; 
(B) g + U(X) + A = U(g + X+h); (2T) g + L(X) + A = L(g + X + A); 
(C) g - U(X) + h=L(g-X+h); (C) g - L(X) + A = U(g - X + A); 
(D) g - U(g,h) + A = L(g, A); (2T> g - L(g,h) + A = U(g,h); 
(E) U(X) + U(Y) g U(X + Y); (Ey) L(X) + L(Y) g L(X + Y). 

Proof. (A) If ue -U(X), then -w gj x, and so u S —x for all XBX, i.e., ue 
eL(—X). Contrary to this, for w € l ( - I ) the relation u «£ — x, i.e., —u ^ x holds 
for all x e X, so that - u e U(X) and u e - U(X). (B) If there exists ueg + U(X) + A, 
then u = g + v + A, whereby v ^ x for all x e X. Hence u ;> g + x + A for all 
x € X and u e U(g + X + h). Conversely, u e U(g + X + A) implies u J> g + x + h 
and therefore — g + u - A ^ x for all XBX. Hence - g + u — he U(X), so that ueg + 
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+ U(X) + A. (Bs) follows from (B) and (A). (C) and (CN) will be obtained immediately 
on using (A), (B), and (By). (D) an (DK) follow from (C) and (C%) for the case X = 
- {g, A}. (£) If there exists we £/(X) + U(Y), then w = t; + w, v e U(X), weU(Y). 
Hence it may be seen that u _ x + y for every pair of elements x, y(x e X, y e Y), 
so that we t/(X + F). (ZT) will be proved similarly. 

2.2. Definition. Let g be an element of a partially ordered group G. A positive part g+ 

(a negative part g~~) of an element g are: 

g+ = U(g,0), (g-=L(g,0)) . 

Remark. A positive and a negative part of an element of a group G are certain 
subsets in G which may even be empty. If, However, one of the defined parts of an 
element is non-empty, the other part of this element, too, is non-empty which follows, 
e.g., from 2.1. (D). 

We shall now make use of the properties of the sets U(X) and L(X) from 2.1. and 
show that positive and negative parts of elements as defined above possess, on partially 
ordered groups, similar properties as those of elements defined on 1-groups (see [3], 
Chapter V). 

2.3. Proposition. For any elements g, A of a partially ordered group G, the following 
relations hold: 

(A) g+ g P(G), g~~ g — P(G), and the equation in the first (the other) case holds 
if and only if g g 0(g = 0); 

(2?)g- = - ( -£ )+ ,£+ = - ( - g ) ~ ; 
(C) (g + A)+ 3 g+ + A+, (g + A)" a g~ + h"; 
(D) (ng)+ 2 n(g+), (ng)~~ \\\ n(g~~) for every positive integer n; 
(E) g - g+ = - g + + g = g~, g - g" = - g ~ + g = g+; 
(F) g+ and (—g") are permutable sets. 

Proof. (̂ 4) The inclusions are obvious from the definition. It may be also seen 
immediately that from g <; 0 or g = 0 follows g+ = P(G) or g~~ = -P(G). If g+ = 
= P(G), then 0 e g+ holds, that is, g g 0 and, similarly, from g~~ = -P(G) follows 
g\%0. (B) Regarding to 2.1. (A) we get g" = L(g,0) = - l / ( - g , 0 ) = - ( - g ) + 

and g+ = C/(g, 0) = -L(-g, 0) = ~ ( - g ) " . (C) From 2.1. (E) follows g+ + A+ = 
- U(g,0) + t/(A,0) g U(g + A,g, A,0) g t/(g + A,0) = (g + A)+ and, similarly, 
regarding to 2.1. (£') in the other case. (D) By means of the relations which are 
corollaries of 2.1. (E) and 2.1. (Ex), we get n(g+) = U(g,0) + ... + f/(g,0) g 
g U(ng9 (ii - l)g, . . . ,g, 0) g C/(ng, 0) = (ng)+ and, analogically, n(g") £ (wg)~. 
(£) From 2.1. (D) follows g - g+ = g - t/(g, 0) = L(g, 0) = g", ^ g + + g = 
*-* -. U(g, 0) + g = L(g9 0) = g""and be means of 2.1. (Dx) the other part of (E) 
Will be proved. (F) On using successively 2.3. (J?), 2.1. (Dy)9 and 2.1. (-4) we get 
S* + (-«"") « f+ + ( -^ ) + - U(g9 0) + t^(-g, 0) = (-L(0, g) + g) + 
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+ ( - * - L(-g, 0)) = -L(0, g) - K - f t 0) = - K O , «?) + tffo 0) « - * - + g+. 
We shall further make use of the notion and properties of positive and negative 

parts of elements in definitions and proofs of the properties of absolutes of elements 
on partially ordered groups. 

2.4. Definition. A set g+ - g" is called an absolute of an element g of a partially 
ordered group G and denoted g+ — g~ = \g\. 

Remark. In this way, with each element of a group G is arranged a certain subset 
of this group which may be, in general, also empty. It is shown in [2] that, in the case 
of an 1-group, an absolute | g | as just defined is equal to the set U(g, — g) and hence 
its relation to the absolute defined on 1-groups is also obvious (on an 1-group, | g | is 
the set of all upper bounds of an element g v — g). 

Like positive and negative parts, absolutes of elements on partially ordered groups 
have similar properties as absolutes on 1-groups. 

2.5. Lemma. Let g be an element of a partially ordered group G. The following rela­
tions hold: 

(A) k | = -g~ + g+; (B) \g\ = g+ + (-g)+=(-g)+ + g+; 
(C)ifgeP(G),then\g[=U(g). 

Proof. (A) and (B) follow at once from 2.3. (F) and 2.3. (J5). (C) If g = 0, then the 
following relation holds: \g\ = U(g, 0) + U(-g, 0) = U(g) + P, so that \g\ = 
= U(g). 

2.6. Proposition. For any elements g, h of a partially ordered group G the following 
relations hold: 

(A) | g | _ P(G), and the equation holds if and only if g = 0; 
(B) I -g I = I g I; (c) i ng I 2 n | g | for every positive integer n; 
(D)\g + h\B\g\ + \ft\ + \g\;(E)\g-h\ = U(g,h)-L(g,h); 
(F) if G is commutative, then \g + h\ £\g\ + \h\ holds. 

Proof. (A) The inclusions | g \ e P(G) and | 0 | = P(G) are obvious (see 2.5. (B)) 
Further, if P = \g\ = g+ + (-g)+, then necessarily g+ - P = (-g)+, because 
if 0 is an element of the sum of two subsets of the positive cone P, then 0 is an element 
in each of them, so that from 2.3. (A) follows g = 0, -g = 0, i.e., g = 0. (B) follows 
from 2.5. (B). (C) According to 2.5. (B) and 2.3. (D) we get n | g \ = n(g+ + (-g)+) = 
= ng+ + n(-g)+ S (ng)+ + (-ng)+ = | ng |. (D) To prove this we apply 2.1. (E). 
The following relation holds: \g\ + \h\ + \g\ = (U(g,0) + U(-g,0) + U(h, 0)) + 
+ (U(-h, 0) + U(g, 0) + U(-g, 0)) s U(g + h, 0, ...) + U(-h - g, 0, ...) -s 
C U(g + h,0)+ U(-h -g,0) = (g + h)+ + (~(g + h))+ = I g + h |. (E) With 
respect to 2.1. (B) and 2.1. (B\ the following relation holds: | g - h | = U(g - h, 0) -
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- Ifr - A, 0) - (U(g, A) - A) - (L(g9 A) - A) = £%, A) - £ f e , h) (F)lfGh 

commutative, the following relation follows from 2.3. (C): I £ I + I A | s- g+ + (—g)+ + 
+ A+ + (-A)+ = g+ + A+ + ( -g) + + (-A)+ c (g + A>+ + M s + A))+ = 
= |g + A|. 

§3 

We shall now make use of the results from the preceding paragraph in defining 
a new disjunctivity on partially ordered groups, observe its relation to the disjunctivity 
± and compare it with the disjunctivities given in § 1. 

3.1. Definition. For any element geG we define a set C(g) = L(\ g\) n P(G)9 when 
1*1 *®;C(g) = P(G)9when\g\=ti. 

Remark. Obviously C(g) *- 0 for every geG9 because | g \ g P(G) (see 2.6. (A)) 
and thus 0 e C(g). 

3.2. Definition. The relation Q on a partially ordered group G9 is defined in the follow­
ing way: 

let g, A e G; then gQh9 when C(g) n C(h) = 0. 

3.3. Lemma. The relation Q is symmetric and anti-reflexive. 

Proof. The relation Q is obviously symmetric. If g e G and gQg9 then C(g) = 
= C(g) n C(g) = 0, so that, for all x e G, the following holds: C(g) n C(x) = 0, i.e., 
gQx9 and Q is anti-reflexive. 

3.4. Proposition. IfG is an l-group9 then the relation Q is equal to the disjunctivity 1. 

Proof. For each element geG, the following relation holds: L(|gl) ~L(U(g9 —g)) = 
= L(g v - g ) (see § 2). Thus C(g) is the set of all positive lower bounds of the element 
g v — g and hence it is evident that elements from G are in the relation Q if and only 
if they are in the relation 1. 

3.5. Lemma. If x and y are those elements of a partially ordered group for which 
there exists xAy and xAy = 0, then xA(y + y) = 0 holds. 

Proof. Let XAy = 0. Obviously, x9 y + y ^ 0 and if u is any lower bound of 
elements x and y + y9 the following relations hold: u — y S y and u — y ^ u £ x. 
Hence u — y g 0, so that ueL(x9y) and u ^ 0. Then xA(y + y) = 0. 

3.6. Proposition. If G is a partially ordered group, then a g Q9 B e Q9 8 g Q. 

Proof. Since a = e g 8 (see 1.2.), it suffices to show 8 e Q. Let g9heG and 
g5A, i.e., there exist r, s e G, r ^ g, - g , 0 , s 2* A, —A, 0 and r A s ~0. Obvi­
ously r + r e | g | = U(g9 0 )+ t / ( -g, 0) ands + se|A| = l/(A,0)+ £/(-A,0).If 
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u e C(g) n C(h)9 then u £ r + r9 s + s holds, so that e/ ^ 0, for, according to 3.5., 
(r + r)A(s + s) = 0. Hence u = 0 and #gA. 

We shall now give an example of a partially ordered group on which the disjunctiv-
ities <5 and Q are different. 

3.7. Example. Let us denote, by the symbol H9 an additive group of all complex 
numbers having integer real and imaginary parts on which partial ordering is defined 
by the following rule: 

x + yi ^ 0, when x > 0 and y > 0 or x + yi = 0 ([3], Chapter II, § 3). 

We shall show that the elements 1 + 2/ and 2 + 2/ are in the relation Q9 but are 
not in the relation S. With regard to 2.5.(C), the following relations hold: C(l + 2/) = 
= L(l + 2/) n P = {1 + 2/, 0}, C(2 + 2i) = £(2 + 2i) n P = {2 + 2/, 1 + i, 0}, so 
that C(l + 2i) n C(2 + 2/) = 0 and the elements are in the relation Q. However, 
they are obviously not in the relation <5, because, e.g., the number i is a lower bound 
of the sets U(l + 2/), U(2 + 2/) and is not less than 0, so that there do not exist 
numbers r e U(l + 2i)9 s e U(2 + 2i) with the property r A S = 0. 

§4 

This paragraph is devoted to the study of some of the properties of #-polars on 
partially ordered groups. It will be the aim of our further considerations to show 
especially that the system of all g-polars forms a complete Boolean lattice on every 
partially ordered group. In proving this we shall make use of the following theorem. 

Theorem (A). Let Q be a non-empty set on which are defined two relations: a sym­
metric, anti-reflexive binary relation co and a reflexive, transitive binary relation •< with 
the minimal element 0 (i.e.9 0 -< x9for all xeQ) which satisfy the following conditions 
(g.KzeQ): 

(a) h<g9gcoh=>h< 0; 
(b) 0ct)0; 
(c) gcoh9 z <g=> zcoh; 
(d) g non coh => there exists ze Q9 z -< g, z -< A and z non -< 0. Then the system 

of all co-polars on Q forms a complete Boolean lattice with respect to the set-theoretical 
inclusion. For any system of co-polars {Aa} the following relations hold: fa Aa = f| Aa9 

a a 

\jAa = (f\ Aa)
& and the complement (in terms of Boolean lattice) of an co-polar A is Am 

a a 

([6], page 64). 

4.1. Definition. On a partially ordered group G9 we define a binary relation ~ in the 
following way: 

for g9heG9g ~h9 when C(g) = C(h). 
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Remark. The relation ~ is obviously reflexive, symmetric, and transitive. We shall 
denote, by the symbol G, the quotient set of a group G with respect to the equivalence 
relation ~, and, by the symbol Kg, the class of an element geG (i.e., the set 
{x e G: x ~ g}). The class of 0 is denoted by the symbol K0. 

Remark. From the definition of the relation ~ may be seen that C(g) g C(h) 
(g,heG) implies C(x) g C(y) for every x e Kg and every y e Kh. It will be easily 
established from gQh follows xQy for all x e Kg, y e Kh. 

4.2. Definition. Let Kg, Khe G. On the set G, binary relations Q and < are defined 
in the following way: 

KgQKh, when gQh; Kg<Kh, when C(g) g C(h). 

4.3. Lemma. The set G with the relations Q and < satisfies the assumptions of the 
Theorem (A). 

Proof. The relation Q is symmetric and anti-reflexive, because the relation Q has 
such properties according to 3.3. The relation -< is obviously reflexive and transitive, 
and, since | 0 | = P (see 2.6. (A)), C(0) = 0 holds, so that C(0) g C(g) for all g e G 
and thus K0 is the minimal element of the set G (with respect to the quasi-order <). 
The properties (a), (b), (c), (d) are still to be proved, (a) Let Kh < Kg and KgQKh. 
Then C(h) g C(g) and C(g) n C(h) = 0, so that C(h) = 0. Hence C(h) g C(0), 
so that Kh<K0. (b) K0QK0 follows from C(0) = 0. (c) If KgQKh and Kz<Kg, the 
following relations hold: C(g) n C(h) = 0 and C(z) g C(g), so that C(z) n C(h) g 
g C(g) n C(h) = 0 and KZQKH . (d) Let Kg non QKh. Then there exists z e C(g) n C(h), 
z > 0. According to 2.5.(C), | z | = U(z), so that C(z) = L(z) n P and hence z e C(z). 
Thus C(z) is not a subset of C(0) = 0 and Kz non -< K0. It remains to show Kz < Kg 

and Kz < Kh. If | g \ = 0, then C(z) g C(g) = P, i.e., KZ «< Kg. Thus let | g | # 0. 
If u e C(z), then 0 = w ^ z, so that u e C(g), because z e C(g). Hence C(z) S C(g) 
and K., -< Kg. The relation KZ -< Kh is proved in a similar way. 

Remark. A set of all g-polars on G, or ^-polars on G with the set-theoretical inclus­
ion as the relation of partial ordering will be denoted by the symbols R(G), or R(G). 

4.4. Lemma. The sets R(G) and R(G) are order-isomorphic. 

Proof. Let us remark first that if At is any g-polar on a group G and A n Kg # 0 , 
Kg e G9 then obviously Kg g A. 

Let / b e a mapping of the set R(G) into the system of all subsets of the set G such 
that, for every A e R(G), f(A) = {Kg e G : Kg g At}. From the introductory remark 
of this Proof may be seen that/is injective, and for A, Be R(G) the relation A g 2? 
holds if and only if/(-4) g f(B). There is still to be proved that/ is a mapping from 
R(G) onto R(G). 
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We shall first prove that f(A) e R(G) for every A e R(G). Let us denote by M 
a subset of G for which MQ = A and let M = {Kg e G: M n Kg # 0}. If Kg ef(A)9 

then Kg g A9 hence MQK9 (that is, mQx for every meM9xeKg) and from the defi­
nition of the relation Q follows MQK§9 SO that KgeMQ. Further, if KheMQ

9 i.e., 
MQKH9 then MtOKfc holds obviously, so that Kh g A and Kfc e/(A(). Hence MQ = /(A(), 
thatis,/(^)Gi?(G). 

Further, let A be any polar from R(G) and let A = #*, where N g G. Let us denote 
by N g G the join of all sets from N. Then f(NQ) = AL Because, if Kg e l , then N£Ktf 

holds, which implies Kg g N«, so that Kff e/CN'). Conversely, Kg ef(NQ) if and only 
if Kg g Nc, but then NQK9 and Kg e A. 

Thus/is an order-isomorphism of R(G) on R(G) and the lemma is proved. 

4.5. Theorem. R(G) is a complete Boolean lattice. For any system of Q-polars \Aa}9 

the following relations hold: AAa = f\Aa9 \/Aa = ( n AQ
a)

Q and the complement {in 
a a a a 

terms of Boolean lattice) of a polar A = AQ. 

Proof. With regard to Lemma 4.3., the proposition of the Theorem (A) holds 
for £-polars on G. Thus, according to Lemma 4.4., R(G) is a complete lattice, whereby, 
if/is the isomorphism defined in 4.4. and {Aa} is any system of polars from R(G)9 the 
following relation holds:/(V4*) = Wf(Aa) and the like for the infimum. Hence R(G) 

a a 

will easily be proved to be a complete Boolean lattice. 
Like in the concluding part of the proof of Lemma 4.4., it may be further shown 

that for every A e R(G) the following relation holds: f(AQ) = (f(A))Q. From the pro­
perties of the isomorphism/follows that the intersection of any system of g-polars 
{Aa} is again a g-polar and obviously f(f\ Aa) = n f(Aa). Hence/(A Aa) = f\f(A J = 

= n / U r ) = / ( n Aa)9 so that AAa = (\Aa ind, further, f(\f Aa) = V / ^ J = 

= (h (f(Aa))
Qy = (n/(^))' = (/(n AW =/an Ain so that v^8 - (n w. 

a a a a a a 

Finally, if we denote by B the complement to a polar A e R(G)9 then f(B) = (f(A))Q 

holds. Thus/(£) = f(AQ)9 so that B = AQ and the theorem is proved. 
Remark. Since C(0) = 0, it may be seen from the definition of the equivalence 

relation ~ that the set K0 will be the minimal polar of R(G) and the group G will be 
obviously the greatest element of R(G). 

4.6. Proposition. Any polar A e R(G) has the following property: 

geA9xeG9 \x\ 3 \g\=>xeA. 

Proof. Let A be a g-polar of a set M g GandletgeAL If xe(?and | x \ 2 \gU 
then C(x) g C(g)9 so that, for all m e M9 we have C(m) n C(x) g C(m) n C(g) « 0, 
i.e., m^x and JC € Af. 

6i 



Remark. Since | -g \ = \g | for every g e G (see 2.6.(B)), then g e A, Ae R(G) 
implies -geA (see 4.6.). 

4.7. Example. We shall show that (?-polars on the partially ordered group H from 
3.7. are generally neither subgroups nor convex subsets of this group. 

Let us denote by the letter A a g-polar of the one-element set {1 + 2/}. In 3.7. we 
have established that gt = (2 + 2/) Q(1 + 2i)9 so that g\€A and we shall now 
show that gx +gl$A. The following relations hold: C(l + 2i) = {1 + 2/, 0}, 
C(gt + gx) = L(4 + 4/) nP = {0, 1 + 2/,...}, hence C(l + 2i) n C(gt + gx) = 
= {1 + 2/, 0}, so that the elements are not in the relation Q, i.e., gt + gx$A and 
A is not a subgroup of the group H 

Further, we shall show that A is not a convex subset of the group H9 that means 
that there exist g9he A and xe H such that g < x ^ h and x$A. With regard to 
the above-mentioned remark the following holds: —gie A. Let us denote g2 = i. 
Then gt > g2 > —gu and we shall show that g2 $ A. Now the following relation 
holds: \g2 | = £/(i,0) + £/(-/, 0) = {* + yieH: x^l9 y = 2} + {x + >>/€#: 
x = 1, y = 1} » {JC + yi e^T: x = 2, j = 3}. Hence C(g2) = L(\ g2\)nP = 
= {1 + 2/, 1 + i,0}. Thus we have C(l + 2i) n Cfe2) = {1 + 2/,0}, that is, 
(1 + 2i) non Qg2, so that g2 4 A and A is not convex. 

Remark. It might be shown on a further example that not even a g-polar of a directed 
and convex normal subgroup of a group having normal and distributive partial 
ordering (see [3], Chapter V) is generally a subgroup of this group. 
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