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§0. 

Let KE be an equational class of algebras of the type T defined by the set of axioms E. 
We denote by C(E) the set of all consequences of E. Let <p9 W be terms in KE. An 

equality cp = W is called to be non-trivializing (see [2]) iff it is of the form x = x 
or none of the terms cp,W is a single variable. Denote by N(E) the set of all non-trivia
lizing consequences of E. Obviously C(N(E)) = N(E). 

It was shown in [2] that if there exists in K£ a unary term q(x) not being a single 
variable such that the equality q(x) = x is satisfied in K£, then an algebra 21 belongs 
to KN(E) iff 21 is isomorphic to subdirect product of algebras 2It and 2l2 where 2tx e KE 

and in 2l2 all fundamental operations are equal to one constant c. 
In this paper we give another representation of algebras from KN(E) without the 

assumption of existence of the term q(x). 

First we prove some properties, 
(i) If 31 = (X; F) is an algebra and r : X -» X is mapping satisfying the condition 

(1) r(r(x)) = r(x) 

then for any a e r(X) we have a = r(a). 

Proof: If any a e r(X), then there exists be X such that 

(2) a = r(b). 

Hence 
r(r(b)) = r(a) 

r(r(b)) = r(b). 
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Lemma. If% = (X; F) is an algebra and r : X -> X satisfies (1) and 

(3) 93 = (r(X); F) is a subalgebra ofM = (X)F; 

(4) a1,...,aneX and f(xx,..., xn) e¥ implies f(at, ..., an) = f(r(ax),..., r(an)) 

then r is an endomorphism 0/21 = (X; F). 

Proof: Obviously r(at), ...,r(an)er(X). By (3) © is a subalgebra so for any 
f(xt,..., xn) € F we have f(r(at),..., r(an)) e r(X). Hence by (i) 

r(f(r(at),..., r(an))) = f(r(at),..., r(an)). 

From the last equality we get by (4) 

r(f(at,...,an)) = r(f(r(ax),..., r(an))) = f(r(ax),..., r(an)). q. e. d. 

Theorem. If an algebra 21 = (X; F) is of the type x, then this algebra belongs to the 
class Kjv(£> iff there exists a mapping r : X -> X such that 

(5) r(r(x)) = r(x) 

(6) 93 = ( r (X ) ;F)eK £ 

(7) iff(xx ,...,xn)e¥andal,...,aneX, then f(ax ,...,an)=f( r(at),..., r(an)). 

Proof: If N(E) = C(E) it is enough to put r(x) = x. We must prove the theorem if 
the set N(E) is a proper subset of C(E). We have three possible cases: 

1° F = 0 

2° F # 0 and (x = y) e C(E) 

3° F * - 0 a n d ( x = y)£C(E). 

If the case 1 ° holds, then any trivializing equality in K£ is of the form x = y. It means 
that KE is a trivial class. Then it is enough to choose an element d e X and to put 
r(x) = d for any x e X and the theorem holds. In the case 2° the values of all funda
mental operations in 21 are equal to one constant c. We put r(x) = c for any xeX. 
Observe that the constructions in cases 1° i 2° show also sufficiency of the condition. 
In the case 3° observe first that a trivializing equality, which exists by assumption 
in C(E), must be of the form g(xx,..., xm) = xt where ie{\, ...,m). We get 
g(x, ...,x) = x. Denote g(x,..., x) = r(x). From the last two equalities for any 
(xt,..., xn) e F it follows: 

(8) r(f(xx,...,xn)) =f(xx,...,xn) 

(9) r(r(x)) = r(x) 

(10) f(xt ,...,xn)= f(r(Xl),..., r(xn)). 

First we prove the necessity. Assume that 21 e KN(E). The equalities (8), (9), (10) are 
non-trivializing and therefore are satisfied in 21 and obviously r maps X into X. 
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So (5) and (7) follows from (9) and (10). By (8) for any f(xt,..., xn) e F and at,..., 
.., an 6 r(X) we have f(at,...,an)e r(X). Thus 93 = (r(X); F) is a subalgebra of 2t. 

Obviously 93 satisfies any equality from N(E). We prove that 93 satisfies any trivia
lizing equality h(xt,..., xs) = x, belonging to C(E). Let xt,..., xs e r(X). By(i) and 
(9) we get h(xi9...,xs) = h(r(x1)9...,r(x^). The equality h(r(xt)9..., r(xs)) = 
=. r(xt) is non-trivializing and holds in 21. Thus we have h(xt,..., xs) = r(x(). 
Applying / we get h(xx,..., xs) == xt. So we proved the condition 6 what finishes the 
proof of necessity. 

Proof of sufficiency: It is enough to show that 21 satisfies any equality belonging to 
N(E). From the assumption and lemma 1 it follows that r is an endomorphism of 21. 
So (7) holds not only for the fundamental operations but also for any term different 
from single variable. Thus if 

(ID <tf.xllt...,xO = T(xh,...,Xjt) 

is not of the form x = x and is non-trivializing consequence of E which is satisfied in 93, 
then for any ah,..., aim, ah,..., ajg e X we have 

cp(r(ah),..., r(aim)) = W(r(ah), ..., r(aJg)). 

So we have 

P K , . . - > « i J = Y(aJl9...9ajJ. 

Thus (11) holds in 21. 
q.e.d. 

Corrolary 1. Any algebra 21 = (X; F) is completely described by a pair (2I0, r(x)), 
where 2I0 = (r(X); F) e KE, r(r(x)) = r(x) and r satisfies (7). 

Corrolary 2. The proof of our theorem gives a method of writting down the axiom-
atics NCE), when E is given. In particular if E is finite than we can find a finite axiom-
atics for KN(E). 

For example we give an axiomatics for K^(E) if KE is the class of lattices 
(X; x + y, xy). 

Al. xy = yx AY. x + y = y + x 
A2. (xy) z = x(yz) A2'. (x + y) + z = x + (y + z) 
A3, (xx) j = xy A3', xx + y = x + )> 
A4. x + xy = xx A4'. x(x + y) = x + x 
A5. xx = x + x 

The reader can check that it is enough to put r(x) = xx. 
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