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ARCH. MATH. 2, SCRIPTA FAC NAT. UJEP BRUNENSIS 
XIV: 85—93, 1978 

CHARACTERIZATIONS OF CERTAIN MONOUNARY 
ALGEBRAS 

(Part I) 

JAN CHVALINA, Brno 

(Received June 20, 1977) 

INTRODUCTION 

The aim of this paper is to give some algebraic characterizations of two types 
of monounary algebras (i.e. pairs 04, f), where A is a non-void set and fa trans
formation of A —a mapping of A into itself). The first of those, called nested, is 
a monounary algebra. The system of all its subalgebras forms a chain with respect 
to the ordering by means of set inclusion. The notion of a nested monounary 
algebra is playing an important role in the analyse of centralizers of set transforma
tions (i.e. endomorphism monoids of monounary algebras), especially by studying 
the realization problems of monounary algebras by closure and topological spaces. 
Cf. [3] and [4]. The second notion studied here is the notion of a reduced connected 
monounary algebra. Such monounary algebras are precisely those connected 
monounary algebras endomorphism monoids of which coincide with monoids of 
continuous closed self maps of quasi-discrete T0-spaces on their carrier-sets (see 
Theorem 3.3 in [3]), Characterizations given here use properties of endomorphism 
monoids from the point of view of the algebraic theory of semigroups and others 
are based on notions from groupoid theory and use special binary operations 
defined on monounary algebras. 

Terms and notations concerning monounary algebras are taken from papers 
[2]> P]» [10],- D*]' [12] and [16], notions from the groupoid and semigroup 
theory from [7] and [5]. 

By N0 we shall denote the set of all non-negative integers, N = N0 — {0}. 
The full transformation monoid of a set A, denoted by T(A), is the set of all self 
maps of the set A with the binary operation—composition of mappings, i.e. 
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f g e J(A), xe A, f.g(x) =f(g(x))~with the unity idA. For n e N, fn means 
the n-th iteration of f f° = idx, f~\x) = {ae A :f(a) = x}. For X g A, fx 

den otes the restriction of the mapping f onto X. A transformation of the set A 
is the same as a self map of A. An element h e T(A) is a left zero of T(A) ifh.g = h 
for every g e T(A). Clearly, h is a left zero of T(A) iff h is a constant transformation 
of the set A. If ^ is a semigroup, X g :^ a nonvoid subset then the subsemi-
group of Sf generated by the set Xis denoted by <X>. If Sf = T(A), X = {f} 
then <f> is the so called monogenuous monoid with the generator f «f> = 
{fn : n e N0}). For A, j? g & we put A . B = {a . ft : a e /*, 6 6 5}. 

A monounary algebra (A,f) is said to be connected or briefly a c-algebra if to 
every pair of its elements a, b there exists a pair of integers m, neN0 withfm(a) = 
= fB(ft). A maximal (with respect to the set inclusion) connected subalgebra of the 
algebra (A J) is called a component of (A J). If {(AtJi) : ie 1} is the system of 
all the components of (A,f), we write (A J) = £ (A^f). The algebra is said to be 

16/ 

idempotent iff2 = f A mapping g e AA is called an endomorphism of the algebra 
(A,f) if g J(x) =f.g(x) for every x e A. The endomorphism monoid of (A,f) 
is denoted by C(f). It is in fact the centralizer of the transformation fe AA in the 
full transformation monoid of the set A. For a e A we put [a)f = {fn(a) : n e N0}, 
(a]f = {x e A : fn(x) = a, ne N0}. 

Let (A J) be a connected monounary algebra, {(B(Ji) : iel} the system of 
all subalgebras of (A,f). We put f\ Bt = Z(AJ) and the set Z(A,f), denoting 

ie/ 

mostly by AJ2, is said to be a cycle of the algebra (A J). If Z(A, f) = 0, then the 
algebra (A J) is called acyclic. Further, we put R(AJ) = card Z(A,f) = card AJ2 

and R(AJ) is called the rank of (A,f). If R(AJ) = 1, A?2 = {a} the element a 
is called a cyclic element of the algebra (component) (A J) and it is denoted mostly 
by zf. Further we put AJl = {xe A: there is a sequence (^,)ieNo such that x0 = x, 
f(xf+1) = xi an(J *| ^ Xj for /, JeN0, i # / } , A^ == {xeA '.f""1^) = 0 } - Let 
Ord mean the class of all ordinals. Let a e Ord, a > 0 and suppose that the sets Af 

have been defined for all x < a. Then we put Af = {xeA - (J A*f :f~
1(x) g 

g (J A^. We suppose thati ooj, oo2 §§0rd and if a eOrd, then a < c©! < co2. 
x<a 

Define a map Sf : A t Ord u {oOj, oo2} by the condition Sf(x) = a for each 
xe Aa

f. Sf(x) is called a degree of x. More in detail concerning these notions can 
be found in [10], [11] and [12]. 

For (A J) = £ (AiJi) with the property i?(Af,f) ^ 1 for each ie I we define 

the ordering (induced by f) in this way: a,b e A, a -£f b, if there exists « e N 0 

with the property fn(a) = b. If a S/b9 a ^ b we write a <fb. A monounary 
algebra (A J) is said to be a one-way, two-way infinite chain respectively if (̂ 4, Sf) 
s a chain of the type cw0, coj © co0 respectively. 
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1. B I N A R Y O P E R A T I O N S Af, Vf 

In this paragraph there will be defined certain binary operations on a connected 
monounary algebra which will be used later for characterizations of nested and 
reduced monounary algebras in terms of the groupoid theory. These binary 
operations denoted by Af and V / 5 are chosen in such a way that for a certain class 
of c-algebras including also reduced and nested ones with the rank at most 1 the 
endomorphism monoids are preserved. Notice that problems of this kind modified 
for ordered sets and semigroups, groupoids and especially partial groupoids are 
studied e.g. in papers [6], [8], [13]. 

Let (A,f) be a connected monounary algebra. If Af
2 # 0, a e A then in accord

ance with Definition 3.3 from [2] we put deg (a) = the smallest integer n such 
thatfw(a) e Af

2. We define a function 8 : A x A -> Z (the set of all integers) called 
a level difference as it follows: 

Let a, be A. If A?2 * 0, i.e. R(A,f) = 1, we put 8(a, b) = deg (b) - deg (a), 
if Af2 = 0, then 8(a, b) = m — n, where m, n are the smallest integers such that 
fn(a) e [b)f, fm(b) e [a)f. Evidently it holds 5(a, b) + 8(b, a) = 0 for each pair 
a, b e A. 

Now, we define binary operations Af, Vf on a monounary algebra (A,f) = 
= YJ (^i»/<) (disconnected in general) in the following way. Let a, be A, ae At 

be Aj, i, jel. We put 

aáfb = \ J 

\f(b) if 

i Ф j or i = ; and ð(a, b) = 0, 

í = j and ð(a, b) < 0, 

where 5 is the level difference on the component (Ai9ft) of (A,f). Further, for 
a, b e A we put 

ajb==(f(a) if aAfb-f(b), 
f \f(b) if aAfb~f(a), 

in all cases. It is to be noted that groupoids (A, Af), (A, Vf) are neither associative 
nor commutative in general. 

1.1. Lemma. Let (A,f) be a connected acyclic monounary algebra. Then a, be A, 
g e C(f) is followed by S(g(a), g(b)) = d(a, b). 

Proof. Let (A,f) be a c-algebra with R(A,f) = 0, geC(f). Let a, be A be 
elements with d(a, b) = 0. There exists a positive integer n such thatfB(a) =fn(b) 
andfm(tf) ¥" / " (*) for m < n. (The case a = b is trivial hence it is not considered). 
Thefn.g(a)*=g.fn(a)=g.fn(b) = fn. g(A)and fm . g(a) *fm.g(b) for m < n, 
thus S(g(a), g(b)) = 0. If, for a, be A, there is 8(a, b) > 0 then for every pair of 
positive integers m, n having the property fm(a) =fn(b) it holds m < n. Then 
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fm . g(a) =fn. g(b) with m < n and since g .f(x) # g(x) for each x e A, we have 
8(a9b) =d(g(a)9g(b)). 

In what follows the monoid of all endomorphisms of a groupoid (A, e) will be 
denoted by E(A, e). 

1.2. Proposition. Let (A, f) be a connected monounary algebra such that either 
R(A,f) =0or R(A9f) = 1 andf2 = / . Then it holds C(f) = E(A9 Af) = E(A9 Vr). 

Proof. We shall show that under the above assumption it holds C(f) e 
Q E(A9 Af) n E(A9 Vr), E(A9 Af) u £(A , Vr) s C(/) . Let g e C(f) and suppose 
R(A9f) = 0. Consider arbitrary elements a, be A. Assume (5(a, b) = 0. By 
Lemma 1.1 it holds S(g(a)9 g(b)) = 0 thus g(aAfb) = g . f(a) = / . g(a) = g(a) Afg(b) 
and g(aVfb) = g . / (b ) = / . g ( b ) = g(a) Vfg(b). If <5(a, b) < 0 then also with 
respect to Lemma 1.1 we get g(aArb) = g(a) Afg(b) and g(a Vrb) = g(a) Vfg(b). 
If/2 = / a n d Z/ is the cyclic element of (A , / ) , i.e./(z r) = zf9 then aArb = aAfb = 
= Z/ for every pair of elements a, be A and we have g(a eb) = g(zf) = z r = 
= g(a) eg(b)9 where e denotes one of the symbols Af9 V/. Thus ge E(A9 Af) n 
n £(A , V/). Now, let g be an endomorphism of (A, e), a 6 A. T h e n / . g ( a ) = 
= g(a) eg(a) = g(aea) = g . / (a ) , hence g e C(/) . Therefore we get C(f) g 
£ £(A , zl/) n £(A , V/) c £(A , Af) u £(A , V/) g C(f). 

The association of the above defined groupoids (A, zl/), (A, Vr) to a monounary 
algebra is related to questions introduced and studied in [15] where among others 
the so called M-groupoids are treated. These objects are associated to address 
machines (treated as models of computers) and it is shown that the category of 
address machines and the category of M-groupoids are equivalent, thus the 
investigations of some properties of address machines can be replaced by the 
investigations of corresponding properties of M-groupoids. 

Let X be a set, Q an equivalence relation on X. If x e X we put \x]Q = 
= {y e X : xQy}. 

A triad G = <X, ., 0> is called an M-grouDoid (see Def. 1.2.4 in [15] if the 
following conditions are satisfied: 

M.l. <X, .> is a groupoid with zero (denoted by 0), 
M.2. Q is an equivalence relation on X satisfying the following conditions: 
M.2.a. x, y e X, XQy implies that for each z e X it holds x . z = y . z. 
M.2.b. card[0] e = 1. 

*Let (A,f) be a monounary algebra. If (A,f) is connected of the rank 1 we put 
0^ = zf, where Af

2 = {zf}. In other cases 0^ denotes a symbol not belonging 
to A. Put A = A u {0^}, Q = {[a,_b] e Ax A, a # zf # b : f(a) =f(b)} u 
u {\0A, 0^]}, for a, b e A we put aAfb = aAfb, a V/b = a V/b and 0AAfa = 
= aAf0A = 0A Vfa = a Vf0A = 0AAf0A = 0A Vf0A = 0^ for each a € Af. It is not 
difficult to prove that (A, Af, Q), (A, V / 5 Q) are M-groupoids and if R(A,f) = 0 
then each homomorphism h : (A,f) -> (B9g) can be naturally extended onto 
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a homomorphism h : (A, Af,o) -+ (5, A9, a) of corresponding M-groupoids by 
h(d) = h(a) for a e A, a ?- 0^ and h(O^) = 0B (cf. Proposition 1.2). Here by a homo
morphism h of M-groupoids we mean such a homomorphism of groupoids (A[, Af)t 

(B, Af) that h(0x) = 0B and a, be A, aqb implies h(a)ah(b)\ cf. Definition 1.2.5 
in [15]. In certain special cases we get that sets of homomorphisms between 
monounary algebras and M-groupoids, corresponding to them, coincide. Thus 
the above constructed functor is a realization of a suitable subcategory of the 
category of monounary algebras and their homomorphisms into the category of 
M-groupoids. We can consider a lot of various binary operations on a monounary 
algebra. Paragraph 1.2 in [15] contains a construction of a certain faithful functor 
from the category of machines into the category of M-groupoids. We get from 
this construction in our case a . b = f(b) for every pair a, be A. It is possible 
to characterize nested and reduced monounary algebras using the groupoid (A, .), 
but it has a few usual properties, e.g. (A, .) is not commutative in cases when 
groupoids (A, Ar), (A, Vf) are commutative. 

We recall some notions of groupoid theory (taken from [7] and [1] § 10) 
necessary in further development. A groupoid (A, e) is called distributive if it 
satisfies the identities ae(bec) = (aeb) e(aec) and (bee) ea = (bed) e(cea). If the 
operation e is not associative we denote by [an] the set of all elements obtained 
from the expression aeae ... ea (n times) by putting parentheses in all possible 
ways. A non-empty subset J g A is a right {left) ideal if aeb e J (bea e J), whenever 
a e J and b e A. If J is a left and right ideal simultaneously, then J is simply called 
an ideal. The least one side or both side ideal containing an element a e A is called 
principal and is denoted by J(a). If J is an ideal of the groupoid (A, e) we can define 
a congruence relation Q on (A, e) as follows: 

[x, y\ e Q iff either x = y or x, y e J. 

The corresponding factor-groupoid is denoted by (A/J, es). 
In [1] § 10 there are given two natural non-associative generalizations of the 

radical: By the strong radical of an ideal J (one or both-sides), denoted by rads J, is 
meant the set of all elements a e A such that [a"] n J # 0 for some integer n. 
The weak radical of J, denoted by radw J, consists of all a e A such that [an] g J 
for some integer n. If (A, e) is a groupoid then Id(A, e) will denote the set of all 
the idempotents of (A, e). A groupoid (A, e) is called a BD-groupoid (in accordance 
with [7]) if it satisfies the following equivalent conditions (cf. Proposition 1.2 
in [7]): 

(i) (A, e) is distributive and Id(A, e) contains just one element, 
(ii) there is an element e e A such that aee = e = eea and a&(bec) = e = (aeb) ec 

for all a, b, c e A. 
1.3. Lemma. Let (A,f) be an idempotent c-algebra. Then the groupoid (A, e) is 

a BD-groupoid for e e {Af, V r}. 
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Proof. Denote by e the only cyclic element of (A,f). Since for every xeA 
there is f(x) = e, we have that a, b e A implies asb = e for e e {Af, Vf}, hence 
the above condition (ii) is satisfied. 

The below stated assertion following from results of [11] and [12] will be 
several times used in this paper. 

1.4. Proposition. Let (A,f) be a c-algebra, a, b e A such a pair of elements that 
Sf(f

n(a)) <J Sf(f
n(b)) for each neN0. Then there exists a mapping g e C(f) with 

g(a) = b. 
P r o o f follows from Definition 9 and Lemma 2.12 [12] with respect to Defini

tion 8 from the same paper [12]. 

2. N E S T E D M O N O U N A R Y A L G E B R A S 

2.1. Definition. A monounary algebra is said to be nested if the system of all 
its subalgebras ordered by means of set inclusion forms a chain. 

An elementfe T(A) is said to be an r-potent if r is the least positive integer with 
the property fr = f The cyclic subgroup of T(A) generated by a permutation 
(i.e. a bijective transformation) g of the set A will be denoted by <f>G. 

2.2. Theorem. Let (A,f) be a monounary algebra. The following three assertions 
are equivalent: 

1 ° For every pair of elements a, be A there exists an integer neN0 such that 
either fn(a) = b or fn(b) = a. 

2° The algebra (A,f) is nested. 
3° The algebra (A, f) is connected and if it is acyclic or finite, then C(f) = <f>G 

and if it is infinite with a non-void cycle, then C(f) = <f, g>, where g is a connected 
r-potent with r = R(A, f). 

Proof. Let 1° hold. Let (At,ft), (A2,f2) be different subalgebras of (A,f). If 
Ai # Aj n A2 T-= A2 then there exist elements aeAx — A2, be A2 — Ax with 
fn(a) T-= b and fn(b) # a for each neN, which contradicts 1°. Hence Al9 A2 are 
compprable, thus 2° holds. 

Let 2° hold. Since components are subalgebras, the algebra (A,f) is connected. 
If 04,f) is a cycle or a two-way infinite chain then by Theorem 2.4 [16] it holds 
C(f) = <f>G, where <f>G is a finite or an infinite cyclic group with the generatorf 
If (A, f) has one generator, i.e. it is a one-way infinite chain or a cycle with a finite 
chain, then by Theorem 2.5 [16] we have C(f) = <f>. Now, let (A,f) be a cycle 
with an infinite chain. Denote by a an element of Af2 with f~* l(a) $ Af2. Let 
g be a mapping of the set A onto Af2 such that f*. g(x) = a, where k is the least 
integer with the property fk(x) = a. The mapping g defined in this way is connected. 
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We show that {/ g} is a set of generators of C(f). Let heC(f). Then either h(A) =r 
= A or h(A) = Af2. Indeed, if for some a e A the element h(a) belongs to A — 
- A?2 = Af\ then for arbitrary beAf1 there exists n e N0 with fn(b) = h(a) 
orfk . h(a) = b for a suitable k e N 0 . There exists ce Af1 such that eitherfn(c) -= b 
orfk(a) — c. Then h(c) = b for he C(f). Now, suppose the first case occurs. Since 
x e Af2 is followed by h(x) e Af2 we have that for each x e A there exists a non-
negative integer w with h(x) = fw(x) (cf. the construction described in Definition 9 
[12]). Let xl9 x2 e A, m be the least integer withfm(x,) = x2. Denote by nl9 n2 

the least integers satisfying the conditions fn,(*i) = h(x2)9 fn2(xi) = h(x2). Then 

r2 .fm(̂ i) = h .r(xt) = r . A(*O = fm. f^xa i.e. r**2^) =f-+^(^i). 
There exists an integer k e N0 with k . R(A9f) = \ m + n2 — (rn + nx) \ = 
= I n2 — nl !. From the minimality of m, w-, w2 it follows k = 0, thus ft, = «2 and 
we have h =f for a suitable non-negative integer n. Suppose h(A) = Af2. Since 
Af ^ 0, it is easy to see that for each non-negative integer n there exists a pair of 
elements a9 b e A — Af2 such that fn(a) = b, hence h 9- fn for each n e N 0 . Let 
a e A^2 be an element with the propertyf" l(a) $ A^?2. Consider the least integer k 
with h(a) = fk(a). Let x e Af2 and n be the least integer with x = fn(a). Then h(x) = 
= h .fn(a) = fn • h(a) = r • f\a) = / * • /"(«) = /*(*) = / * . g(x). If x e A - A?2 

and m is the least integer having the property fm(x) = a, thenfm . h(x) = h .fm(x) = 
= h(a) = fk(a). According to the definition of the mapping g there is g(x) = y9 

whenever fm(y) = a. Thusfm . h(x) =fk(a) = fk . fm(y) = fm . fk . g(x). Further 
h(x)eAf2

9 g(x)eAf2
9 thus also fk.g(x)eAf2. Consequently h(x) = fk.g(x). 

This equality holds for each x e A, thus // =fk. g. Consequently the condition 3° 
is satisfied. 

Suppose 3° holds. If C(f) e {<f>, <f>G}, then by Theorems 2.4 and 2.5 from [16] 
we get that (A9f) is one of these forms: a cycle, a two-way infinite chain, a cycle 
with a finite chain, a one-way infinite chain. Then evidently condition 1 ° is satisfied 
in this case. Suppose C(f) = <f, g} ^ <f>, is a suitable r-potent, r = 2. Admit 
there exists a pair of elements a9be A such that f"(a) ?- b and at the same time 
fn(b) jz a for each n e N 0 . We shall analyze the three following cases: 

(i) a, be Af\ (ii) a e Af\ be A - (Af1 u Af2)9 (iii) a9 b e A - (A*1 u A^2). 
In case (i) we have Sf(a) = Sf(b) = 00 j , Sf(f

n(a)) = Sf(f
n(b)) for each n e N thus 

by Proposition 1.4 there exist different endomorphisms hl9 h2 of (A9f) such that 
ht(a) = b, h2(b) = a. Then evidently C(f) ^ <fg} for every r-potent ge T(A)9 

which is a contradiction. Consider case (ii). We have Sf(a) = 00 x again, Sf(b) 
is an ordinal, thus Sf(f

n(b)) = Sf(f
n(a)) for each n e N 0 . B y Proposition 1.4 there 

exists an endomorphism of (A9f)9 say hl9 with /^(b) = a. If Af2 *-= 0 then C(f) 
contains a mapping h2 of A onto A J 2 such that h2 # </, hj> and hx $ </, h2> and 
we get a contradiction. If Af2 = 0, we can suppose 8(a9 b) = 0. Then ht is dis
connected and if g is an endomorphism with 5(g(b), b) < 0, then g is not r-potent 
for any r e N. 
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Let the case (iii) occur. If A^p # 0 w e can use the same consideration as in the 
case (ii). Let Af

l = 0 . There exists a pair of different elements a0, b0 e Af and 
a pair of positive integers m, n with fm(a0) =fn(b0). Suppose that m, n are the least 
integers with the above property. If Sf(f

k(a0)) = k for k = 0, 1, 2, ..., m, then by 
Proposition 1.4 there exists heC(f) with h(a0) =fM"1(^o)?

 t n U S h $ </> a n d 
A i < / g> if .4/2 ?- 0 and g e C(f) maps A onto A^2. This is a contradiction. Let 
Sf(f

k(a0)) > k for some k e {1, 2, ..., m). Suppose that k is the least integer with 
this property. There is an element c0eA°f, c0 # a0 such that fk(a0) = fp(c0) 
implies k > p. Denote by c- the only element of the set [c0)f nf~l(fk(a0)). Then 
evidently Sf(f

n(a0)) = Sf(f
n(c{)) for each n e N0 thus again with regard to Proposi

tion 1.4 there exists an endomorphism of (A , / ) which maps the element a0 onto 
the element ct. In the same way as above we get a contradiction. Therefore to the 
pair a, be A there exists an integer n e N0 such that either/"(a) = b ox fn(b) = a. 
Hence condition 1° is satisfied, q.e.d. 

Recall that the set of all idempotent of a semigroup Sf is denoted by I d ^ . 

Corollary. Let (A J) be a nested monounary algebra. Then <IdC(/)> is a sub-
monoid of a monoid consisting the identity and one left zero of T(A). 

Proof. Let (A , / ) be a nested monounary algebra. If R(AJ) = 0 then by 3° of 
Theorem 2.2 it holds C(f)e {</>, </> c}. Then IdC(/) contains the only element 
id^ f o r / 2 ?- / a n d thus <IdC(/)> is trivial. Suppose R(AJ) > 0. If R(AJ) > 1 
then for every g e C(/) , g ^ id^ having the property g(A) = Af2 it holds g

2 = g. 
Then <IdC(/)> is trivial again. If JR(A,/) = 1 and zf is the cyclic element of (A,f) 
then the constant mappingg e AA with the value zf belongs to IdC(/), thus IdC(/) = 
= {id, ,g} = <IdC(/)>. 

2.3. Proposition. Let A be a non-empty set, fe T(A). The monounary algebra 
(A , / ) is nested iff for every pair of left zeros gl, g2 e T(A) and a suitable g e {gi, g2] 
it holds <fgt,g2} = < / > . g . 

Proof. Assume (A, / ) is a nested monounary algebra, gt, g2 e T(A) are different 
left zeros, i.e. constant transformation of the set A. Denote by a the value of gt, 
by b the value of g2. By Theorem 2.2 there exists an integer n = 1 such that either 
fn(a) = b or fn(b) = a. Consider the first possibility. Let h e </> . g2. Then there 
exists a non-negative integer k with the property h =fk.g2 and for each element 
xeAwehave/*(x) =fk.g2(x) =fk(b) =fk.fn(a) =fk+n

gi(xl thus h e </> . gl, 
hence </> . g2 g </> . gt. Now, let h e </, gx, g2}. Since gt. gj = gt for ij e {1, 2}, 

gi.f
n = gi for / = 1, 2 &nd every n e N 0 , there exists a non-negative integer m 

such that either h = fm . gl or h =fm . g l . Hence < / gl9 g2> = <f> . gl u 
u </> • £2 == </> • £i • I*1 ^ e same way we get that the assumption fn(b) = a is 
followed by </, g t , g2> ^ </> . g l . 

Let a, 6 € A be arbitrary elements, gx, g2 left zeros of J(A) such that gi(x) = a, 
g2(x) =fe for each x e A. Then for gi9 g2 and suitable g e { g l 9 g 2 } it holds 
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< / g\ - gi> = </> • g according to the supposition. Assume g = gx. Then <f>. gx u 
v </> • gi = < / Si ^ 2 > = </> - S i , thus <f> . g2 c <f> . gt. Further, there 
exists an integer n e N0 with g2 = / " . £1. Let x e ,4 be an arbitrary element. Then 
* = gi(x) = / " • gi(x) = /"(-*)• I n the same way we get also that the equality g = g2 

is followed by fn(b) = a. Therefore condition 2° from Theorem 2.2 is satisfied. 

Another characterizations of a nested monounary algebra use binary operations 
Af, V / 5 especially solution sets of equations of the type aAfx = b, a, b e A. If e 
denotes a binary operation on the set A, a, b e A. If e denotes a binary operation 
on the set A, a, be A we put S(e, a, b) = {x e A : aex = b}, St(s, a, b) = 
= {x e A : aex = b, x ?- a}, S2(e, a, b) = {x e A : aex = b, x # b}. By ~ there 
is denoted the following congruence on the algebra (A,f): a, b e A, a ~ b if either 
a = b or a, b e Af

2. 

Convention. If (A 0 , / 0 ) is a monounary algebra, we shall write A0, V0 instead 
of A/o, V /o respectively. 

2.4. Theorem. Let (A,f) be a connected monounary algebra. Denote by e one 
of binary operations A0, V0 on a monounary algebra (A0, f0) which is a factor-
algebra of (A,f) by the congruence ~. The following assertions are equivalent: 

1° The algebra (A, f) is nested. 
2° (Ao, e) is a commutative groupoid such that for every pair of elements a, b e A0 

the equality aea = beb is followed either by a = b or by a 7-= b, {a, b} n Id(A0, e) 7--
7 -0 . 

3° If a, b e A0 is a pair of different elements then either card S2(A0, a, b) _ 1 
or card 52(z10, a, b) > 1 and c e SX(A0, a, b) implies S(A0, c, a) n S(A0, a, b) 7-= 0. 

Proof. Let 1 ° hold. The factor algebra (A0,f0) is nested with at most one-element 
cycle. IT a, b e A0, a # b then either S(a, b) > 0 or S(a, b) < 0, thus aA0b = 
= fo(a) = bA0a, a V0b = f0(b) = b V0a in the first case and aJ0b = f0(b) = b.d0a, 
aV0b =f0(a) = b V0a in the second case. Further, let a, b e A0 be elements 
satisfying the equality aea = beb. Let a # b. By Theorem 2.2 (2°) there exists « e N 
such that either fo(a) = b or fo(b) = a. Consider the first possibility. If n = 1 
thenfo(a) =f0(b) = fo(a) = b is a cyclic element of t*he algebra (A0,f0), if n > 1 
then b =/0

w(a) = / r 1 ./0(a) = / r 1 ./0(b) =/0
w(b), thus {b} = Z(A0,f0) again. 

In the case f0(b) = a we get in the same way as above {a} = Z(A0,f0). Thus 
{a, b} n Id(A0, e) ^ 0. Consequently 2° is valid. 

Suppose the condition 2" is satisfied. Let a, b e A0 be elements with the property 
cardS2(A0 , a, b) > 1. Since with respect to the definition of the operation A0 

from 8(a, b) = 0 it follows S2(zio, a, b) = 0 we have 5(a, b) < 0. The groupoid 
(A0 ,zl0) is commutative, i.e. x,yeA0, S(x, y) = 0 is followed by f0(x) =f0(y) 
and since S2(A0, a, b) ^ 0, we have a <f b. Admitf0(a) 7-= b. Since St(A0, a, b) = 
= 0 (with a 7-- b) is followed by card 52(A0, a, b) = 1 for SX(A0, a, b) u S2(A0, a, b) = 
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= S(A0, a, b) = {a} u S^zlo, a, b), the solution set S^Ao, a, b) is non-empty. 
Then [ fo^b) - { b ^ u S ^ z l o , a, b) = S2(A0, a, b) and [f0\b) - {b}] n 
n S!(zlo, a, b) # 0. Since card [(fo'Hb) - {*}) n S^zlo, a, b)] = 1 implies card 
S2(zl0, a, b) = 1, we have that there are different elements ci, c2 e f0 (b) n 
n Sx(A0a, b), i.e. aA0ct = b = az10c2, i.e. cjzloci =fo(^i) = b -fo&i) = ^2^o^2-
By 2° it holds ct = c2, which is a contradiction. Hence f0(a) = b. Now, let 
c e Sj(z1o, a, b). Since <5(a, c) = 0 impliesf0(c) = b, i.e. cA0c = b -= a/10a thus by 2° 
we get a contradiction (a = c), we have c <foa. The set S(A0, c, #) is non-empty. 
Let cj e S(z10, c, a). Then <5(a, ct) > 0, thus aAoc! =f0(a) = b, i.e. cx e S(A0, a, b). 
We get S(A0, c, a) n S(A0, a, b) # 0, consequently condition 3° is satisfied. 

Suppose 3° is valid. Let a, b, e A0 be arbitrary elements. Assume f0(b) ^ a 
for each k e N 0 . Since the algebra 04,f) is connected there exists a pair of integers 
m, neN such that f^O?) =f0(b). Vet m, n be the least integers with the given 
property. Admit n ^ V Then ra ^ 1 and we get {f0~

l(a), f0~
l(b)} <= 

c S2(A0, f0~
x(a), f0(a)). Since f"""1^) ^f0~'(u) we have by 3° that for every 

element c e Sx(AoJo~X(a),f%(a)) it holds S(A0, c,f™-\aj) n S{A0^'\a)JS(a)) 
for c -jfe/T'C*) a n d ^ - ^ ^ z l o A o c = f0 .f0

m"1 (a) = f 0 » . But for x e A0 having 
the property 5(x, c) > 0 it holds cA0x = f0~*(a) A0x = f0(*) and for x e A0 such 
that S(x, c) <. 0 it holds cA0x = f0(c) = f0(a), thus cA0x ^ f0~

x(a) for each x G A0. 
From here it follows S(z10, c, fo~l(a)) = $, which is a contradiction. Hence 
ft = 0,fo(a) = b and we have that the algebra (A0,f0) is nested and thus (A,f) is 
nested, too. The proof is complete. 

Using notions of a square root and a radical in groupoids, the other simple 
characterization of a nested monounary algebra can be given. Let (A, e) be 
a groupoid, aeA. We put v a = (x e A : xex = a}. Every element be^/a is 
called a square root of the element a in the groupoid (A, e). If yj'a = 0 then we say 
that the element a possesses no root, if card yja = 1 we say that the element 
a possesses a unique square root in (A, e) and we denote this only square root 
of the element a by X/a. Notice that for a c-algebra (A,f) with the one-element 
cycle {e} it holds y/e = radw {e} in the groupoid (A, Vr). In what follows there 
is again denoted by ~ the above defined congruence on (A,f) i.e. (for an arbitrary 
monounary algebra) equivalence classes of ~ are cycles and singletons disjoint 
with cycles. 

2.5. Theorem. A monounary algebra is nested iff the following two conditions are 
satisfied: 

1° The groupoid (A0, A0) ((A0< V0)) is either ideal-simple or for each its right 
(left) ideal J it holds rads J = A0. 

2° The groupoid (A0, e), e e {A0, V0} contains at most one idempotent e, at most 
one element a0 possessing no root and every element x e A0, x # e possessing at most 
one square root in the groupoid (A0, e). 
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Proof. Let (A,f) be a nested monounary algebra. Then (A0,f0) is of the same 
property. Let card A0 > 1. Each subgroupoid of the commutative groupoid 
(A0, A0) is its ideal. If / is an ideal then / == {f0(a): k = 0, 1, 2, . . . } , a e A0 and 
for every x e A0 there exists an integer n such that / 0 (x) e / . Then ((... ((xA0x) x 
xA0x) ...) A0x) = / 0 ( x ) e / , (x n-times), thus x e r a d s / , consequently rads / = 
= A0. Consider the groupoid (A0, V0). If Afo = 0 then the groupoid (A0, V0) 
is ideal-simple. Indeed, denote by / an ideal of (A0, V0) and admit that there exists 
an element a e A0 with / = {f0(a): k = 0, 1, 2, . . . } . Denote by b, c elements of A0 

satisfying the conditions /0(b) = a, f0(c) = b. Then c V0a = a V0c = b $ / , thus 
/ = A0. If Afo T«- 0, i.e. Afo = {a0} then the underlying set of the only proper 
ideal / i s {f0(a0): k = 1, 2, ...} and evidently rads / = radw / = A0. Condition 1° 
is satisfied. 

Let £ e { A 0 , VQ}. There is Id(A0 ,e) = Z(A 0 , / 0 ) - a one-element cycle. If 
a0 e A°fo, then yfal = 0. (it is card A°fo g 1). For x e A0 such that f0 *(x) ?- 0 
and/ 0(x) ^ x it hold card ^/x = 1, where the square root is considered in (A0, e). 
Hence condition 2° is also satisfied. 

Suppose (A , / ) is a monounary algebra such that the groupoid (A0, s), where 
£ e {A0, V0}, on the factor-algebra G40 , /0) of (A!,/) satisfies conditions 1° and 2°. 
If (A0i, fod is a component of the algebra (A0, f0) we have by the definition of 
operations A0, V0 that A0i is the carrier set of a right, left ideal of the groupoid 
(A0, z-o), (A0, V0) respectively. If the algebra (A0,f0) contains at least two different 
components, say (A01 , / 0 1 ) , (A02 Joi\ then for arbitrary a e A02 it holds/"(a) 4 A0i 

for every n e N 0 , thus [an~] n A01 = 0 and we have rads A02 ^ A0, which con
tradicts the assumption. Hence the algebra (A0,f0) is connected. Consider a pair 
of elements a, b e A0 with /0(a) =/ 0 (b ) . Put c = f0(a) =/0(b) . Then a&a = beb = 
= c, where e e {A0, V0}, thus a, be y/c. By 2° there is either a = b or esc = c. But 
in the second case we have f0(c) = c, hence (A0, ^ / o ) is a chain, therefore the 
algebra (A0,f0) is nested and consequently (A, / ) is of the same property. 

Recall that a congruence 0 of the monounary algebra (Ayf) is an equivalence 
relation on A satisfying the substitution property: (a, b) e 0 implies (f(a),f(b)) e 0. 
A congruence of the monounary algebra (A , / ) is said to be fully invariant if, for 
any g e C(/) , (a, b) e 0 implies (g(a), g(b)) e 0. Using Theorem 5.1 [16] we get 
the following characterization: 

2.6. Theorem. Let (A,f) be a c-algebra. The following conditions are equivalent: 
1° All congruences of (A, f) are fully invariant. 
2° (A , / ) is nested and for each a e A and every sequence {an}0^n<oi0 of elements 

from A the sequence of integers {5(a, an)}0^n<(ao has at most one improper cluster 
point. 
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Proof. By Theorem 5.1 [16] we have that 1° is equivalent to the condition that 
{A9f) is nested but not a two-way infinite chain. Thus it is sufficient to prove that 
{A,f) is a two-way infinite chain iff there is a point a e A and a sequence 
{an}o<ln<a>o = ^ s u c ^ ^ a t the sequence of integers {S(a, an)}0^n<(o0 has two 
improper cluster points (+oo and — oo). Let (A,f) be two-way infinite, aeAbe 
an arbitrary element. Putting a2k =fk(ct), k = 0, 1, 2, ... and a2fc_i = *> where 

fk(x) = a, k = 1, 2, ..., we obtain the sequence with the above mentioned property. 
On the contrary, let (A,f) be a c-algebra such that the sequence {5(a, an)}0^n<(O0 

for some ae A and {an}0^n<a)0 s A has two improper cluster points — oo and + oo. 
Then there exist subsequences {p„k}, {q„k} of {5(a, an)} with limits limpWfc = — oo, 
l i m q«k = + °°. Then the set of members of the sequence {a„k} such that S(a, a„k) = 
= pnk is Unbounded from above in (A0, g / o ) (A0 is a factor-set of A in the above 

defined congruence ~ on the algebra (A,f)) and similarly A0 contains a decreesing 
chain without any lower bound. Hence R(A,f) = 0, AJl ^ 0. Since 04, f) is 
nested, it is a two-way infinite chain. 

A complete survey of obtained results concerning congruences on monounary 
algebras and other related problems is contained in the paper of L. A. Skorn-
jakov [14]. 
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