Archivum Mathematicum

Pavol Šoltés

Oscillation of solutions of a non-linear delay differential equation of the fourth order

Archivum Mathematicum, Vol. 14 (1978), No. 3, 175--180
Persistent URL: http://dml.cz/dmlcz/107005

Terms of use:

© Masaryk University, 1978
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

OSCILLATION OF SOLUTIONS OF A NON-LINEAR DELAY DIFFERENTIAL EQUATION OF THE FOURTH ORDER

PAVEL ŚOLTÉS, Košice

(Received March 30, 1977)

The papers [3], [4] and [5] investigate the properties of solutions of third and fourth order differential equations without argument delay. Certain results of these papers were extended and generalized in [1] and [2]; the latter papers are concerned with investigating the properties of solutions of the non-linear differential equation

$$
\begin{equation*}
\left(\varrho(x) y^{\prime \prime \prime}\right)^{\prime}+p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y+y(x) \sum_{i=1}^{n} Q_{i}(x) F_{i}\left(y\left(h_{i}(x)\right)\right)=g(x) \tag{1}
\end{equation*}
$$

with $\varrho(x) \equiv 1$.
The present paper contains results which are an extension and generalization of certain results of these papers, especially [2] and [6].

We shall assume throughout that the functions $\varrho(x)>0, \varrho^{\prime}(x) \geqq 0, \varrho^{\prime \prime}(x) \leqq 0$, $p(x), q(x) \geqq 0, r(x), g(x), Q_{i}(x)$ and $h_{i}(x)(i=1,2, \ldots, n)$ are from $C_{0}(J)$ where $J=$ $=\left\langle x_{0}, \infty\right), n$ is a natural number.

Suppose further that

$$
\begin{gathered}
\inf _{x \in J}\left[x-h_{i}(x)\right] \geqq d>0, \quad h_{i}(x) \rightarrow+\infty \quad \text { as } \quad x \rightarrow \infty, \\
F_{i}(z) \in C_{0}(-\infty, \infty), \quad F_{i}(z) \geqq 0 \quad \text { for } i=1,2, \ldots, n .
\end{gathered}
$$

We can now define the initial problem: let $\Phi(x)$ be defined and continuous on the initial set

$$
E_{x_{0}}=\bigcup_{i=1}^{n} E_{x_{0}}^{i}, \quad E_{x_{0}}^{i}=\left\langle\inf h_{i}(x), x_{0}\right\rangle
$$

and let $y_{0}^{(k)}, k=1,2,3$ be arbitrary real numbers. We want to find a solution $y(x)$ of (1) defined on J satisfying the initial conditions:

$$
\begin{gather*}
y\left(x_{0}\right)=\Phi\left(x_{0}\right)=y_{0}, \quad y^{(k)}\left(x_{0}+0\right)=y_{0}^{(k)}, \quad k=1,2,3 \tag{2}\\
y(x)=\Phi(x) \quad \text { for } x \in E_{x_{0}} .
\end{gather*}
$$

We have the following theorem:

Theorem 1. Suppose that $q(x) \in C_{1}(J)$ and that for every $x \in J$

$$
\begin{gathered}
2 \varrho(x)-|p(x)| \geqq 0, \quad 2 r(x)-|p(x)|-q^{\prime}(x)-|g(x)| \geqq 0, \\
Q_{i}(x) \geqq 0, \quad i=1,2, \ldots, n .
\end{gathered}
$$

If

$$
\begin{equation*}
\int_{x_{0}}^{\infty} \frac{q(s)}{\varrho(s)} \mathrm{d} s=+\infty \tag{3}
\end{equation*}
$$

then any solution $y(x)$ satisfying (2) and such that

$$
\begin{equation*}
H\left(y\left(x_{0}\right)\right)+\frac{1}{2} \int_{x_{0}}^{\infty}|g(s)| \mathrm{d} s \leqq K_{0} \leqq 0 \tag{4}
\end{equation*}
$$

where $H(y(x))=\varrho(x) y(x) y^{\prime \prime \prime}(x)-\varrho(x) y^{\prime}(x) y^{\prime \prime}(x)+\frac{1}{2} \varrho^{\prime}(x) y^{\prime 2}(x)+\frac{1}{2} q(x) y^{2}(x)$ is oscillatory on J.

Proof. Let $y(x)$ be a solution of (1) and (2) satisfying (4) which is not oscillatory. This means that e.g. $y(x)>0$ for all $x \geqq x_{1} \geqq x_{0}$.

Multiplying (1) by $y(x)$ and integrating from x_{0} to $x \geqq x_{0}$, we get after some manipulations

$$
\begin{gather*}
H(y(x))+\int_{x_{0}}^{x}\left[\varrho(s)-\frac{1}{2}|p(s)|\right] y^{\prime \prime 2}(s) \mathrm{d} s+ \tag{5}\\
+\int_{x_{0}}^{x}\left[r(s)-\frac{1}{2}|p(s)|-\frac{1}{2} q^{\prime}(s)\right] y^{2}(s) \mathrm{d} s- \\
-\frac{1}{2} \int_{x_{0}}^{x} \varrho^{\prime \prime}(s) y^{\prime 2}(s) \mathrm{d} s+\sum_{i=1}^{n} \int_{x_{0}}^{x} y^{2}(s) Q_{i}(s) F_{i}\left(y\left(h_{i}(s)\right)\right) \mathrm{d} s \leqq \\
\leqq H\left(y\left(x_{0}\right)\right)+\int_{x_{0}}^{x}|g(s)||y(s)| \mathrm{d} s
\end{gather*}
$$

and thus

$$
\begin{align*}
H(y(x))+\int_{x_{0}}^{x} & {\left[r(s)-\frac{1}{2}|p(s)|-\frac{1}{2} q^{\prime}(s)-\frac{1}{2}|g(s)|\right] y^{2}(s) \mathrm{d} s \leqq } \tag{6}\\
& \leqq H\left(y\left(x_{0}\right)\right)+\frac{1}{2} \int_{x_{0}}^{x}|g(s)| \mathrm{d} s \leqq K_{0} \leqq 0 .
\end{align*}
$$

For $x \geqq x_{1}$, from (6) we have

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\frac{y^{\prime \prime}(x)}{y(x)}\right] \leqq-\frac{1}{2} \frac{q(x)}{\varrho(x)} \tag{7}
\end{equation*}
$$

and therefore, owing to (3), $\frac{y^{\prime \prime}(x)}{y(x)} \rightarrow-\infty$ as $x \rightarrow \infty$ so that there exists a number $x_{2} \geqq x_{1}$ such that for every $x \geqq x_{2}$ is $y^{\prime \prime}(x)<0$ and therefore $y^{\prime}(x)$ decreases on $\left\langle x_{2}, \infty\right)$. Therefore one of the following statements must hold:

1. $y^{\prime}(x) \geqq 0$ for all $x \geqq x_{2}$.
2. There exists $x_{3} \geqq x_{2}$ such that $y^{\prime}(x)<0$ for all $x \geqq x_{3}$.

Evidently 2 contradicts the assumption that $y(x) \geqq 0$ for $x>x_{1}$.
Suppose therefore that $y(x)>0, y^{\prime}(x)>0, y^{\prime \prime}(x)<0$. Then, owing to (7)

$$
\frac{y^{\prime \prime}(x)}{y\left(x_{2}\right)} \leqq \frac{y^{\prime \prime}(x)}{y(x)} \leqq \frac{y^{\prime \prime}\left(x_{2}\right)}{y\left(x_{2}\right)}-\frac{1}{2} \int_{x_{2}}^{x} \frac{q(s)}{\varrho(s)} \mathrm{d} s
$$

and thus $y^{\prime \prime}(x) \rightarrow-\infty$ as $x \rightarrow \infty$ which contradicts the assumption $y^{\prime}(x) \geqq 0$.
If we assume $y(x)<0$, the proof is analogous.
Remark 1. Theorem 1 is a generalization of Theorem 3 of [2] and Theorem 3 of [6]. It is evident from the proof of Theorem 1 of [2] that it is not enough to assume that $F_{i}(z), i=1,2, \ldots, n$ are increasing functions. Some additional hypothesis is needed, e.g. that for all $i=1,2, \ldots, n$

$$
\begin{align*}
& F_{i}(z) \text { decreases on }(-\infty, 0) \text { and increases on }(0, \infty) \text { or for all } i=1,2, \ldots, n, \tag{8}\\
& \inf _{\delta<|z|<\infty} F_{i}(z)=F_{i \delta}>0 \quad \text { for every } \delta>0 \tag{9}
\end{align*}
$$

In that case it is possible to generalize Theorem 1 of [2]. We obtain the following two theorems:

Theorem 2. The hypotheses of this theorem are the same as those of Theorem 1 with (3) replaced by the condition

$$
\begin{equation*}
\int_{x_{0}}^{\infty} \frac{1}{\varrho(s)} \mathrm{d} s=+\infty, \quad \int_{x_{0}}^{\infty} Q_{i}(s) \mathrm{d} s=+\infty \tag{10}
\end{equation*}
$$

holds true at least for one $i=1,2, \ldots, n$.
In addition, suppose that for $x \in J p(x) \geqq 0, r(x) \geqq 0$ and that $F_{i}(z)$ satisfy the condition (8). Then every solution $y(x)$ of (1) and (2) satisfying (4) with $K_{0}<0$ is oscillatory on J.

Proof. Suppose that a solution $y(x)$ of (1) satisfies (2) and (4) and that e.g. $y(x)>0$ for every $x \geqq x_{1} \geqq x_{0}$. From (7) we see that $\frac{y^{\prime \prime}(x)}{y(x)}$ is nonincreasing on $\left\langle x_{1}, \infty\right)$ and therefore one of the following statements must hold:

1. $y^{\prime \prime}(x)>0$ for all $x>x_{1}$.
2. There exists $x_{2} \geqq x_{1}$ such that for every $x \geqq x_{2}$ holds $y^{\prime \prime}(x)<0$.

Suppose that 1 . holds. Then $y^{\prime}(x)$ is nondecreasing and therefore one of the following statements must hold:
a) $y^{\prime}(x) \leqq 0$ for all $x \geqq x_{1}$.
β) There exists $x_{2} \geqq x_{1}$ such that for all $x \geqq x_{2} y^{\prime}(x)>0$.
For the case α) we can prove from (6) that

$$
\varrho(x)\left(y(x) y^{\prime \prime}(x)-y^{\prime}(x) y^{\prime \prime}(x)\right) \leqq K_{0}<0
$$

and therefore

$$
y^{\prime \prime \prime}(x) \leqq \frac{K_{0}}{\varrho(x) y(x)} \leqq \frac{K_{0}}{y\left(x_{1}\right) \varrho(x)}
$$

so that $y^{\prime \prime}(x) \rightarrow-\infty$ as $x \rightarrow \infty$ which is a contradiction. Therefore $y(x)>0, y^{\prime}(x)>$ $>0, y^{\prime \prime}(x) \geqq 0$ for each $x \geqq x_{2}$. Considering the hypotheses, we derive from (1)

$$
\left(\varrho(x) y^{\prime \prime \prime}(x)\right)^{\prime}+y\left(x_{2}\right) \sum_{i=1}^{n} F_{i}\left(y\left(x_{2}\right)\right) Q_{i}(x) \leqq g(x) \quad \text { for } x \geqq \bar{x}_{2},
$$

where $\bar{x}_{2} \geqq x_{2}$ is large enough, and thus $\varrho(x) y^{\prime \prime}(x) \rightarrow \infty$ as $x \rightarrow-\infty$, again a contradiction.

Suppose now that statement 2° holds. Then necessarily $y(x)>0, y^{\prime}(x) \geqq 0$, $y^{\prime \prime}(x)<0$. Owing to (7), we have therefore

$$
\frac{y^{\prime \prime}(x)}{y\left(x_{2}\right)} \leqq \frac{y^{\prime \prime}(x)}{y(x)} \leqq \frac{y^{\prime \prime}\left(x_{2}\right)}{y\left(x_{2}\right)}
$$

and therefore $y^{\prime}(x) \rightarrow-\infty$ as $x \rightarrow \infty$, a contradiction.
The proof is analogous if we assume that $y(x)<0$.
Analogously we can prove
Theorem 3. The hypotheses are the same as' those of Theorem 2 with (8) replaced by (9). Then every solution $y(x)$ of (1) satisfying (4) with $K_{0}<0$ is oscillatory on J.

Theorem 4. The hypotheses are the same as those of Theorem 1 with (3) replaced by

$$
\begin{equation*}
\int_{x_{0}}^{\infty} \frac{\mathrm{d} s}{\varrho(s)}=\int_{x_{0}}^{\infty} r(s) \mathrm{d} s=+\infty \tag{11}
\end{equation*}
$$

Suppose in addition that $p(x) \geqq 0$ and $r(x) \geqq 0$ on J. Then any solution $y(x)$ of (1) satisfying (2) and (4) with $K_{0}<0$ is oscillatory on J.

Proof. Suppose that $y(x)$ satisfies (1), (2) and (4) and is not oscillatory. It is evident from the proofs of previous theorems that it is sufficient to investigate the case

$$
y(x)>0, \quad y^{\prime}(x)>0, \quad y^{\prime \prime}(x) \geqq 0 .
$$

From (1) we get for $x \geqq x_{2}$

$$
\left(\varrho(x) y^{\prime \prime}(x)\right)^{\prime}+y\left(x_{2}\right) r(x) \leqq g(x)
$$

and from this we derive a contradiction analogously as in the proof of Theorem 2,
The following theorem is evident
Theorem 5. Suppose that the hypotheses of Theorem 1 hold except for (3) which is replaced by

$$
\begin{equation*}
\int_{x_{0}}^{\infty} \frac{\mathrm{d} s}{\varrho(s)}=\int_{x_{0}}^{\infty}\left[r(s)-q^{\prime}(s)\right] \mathrm{d} s=+\infty \tag{12}
\end{equation*}
$$

and that $p(x) \geqq 0, r(x)-q^{\prime}(x) \geqq 0$ for all $x \in J$. Then every solution $y(x)$ of (1) satisfying (2) and (4) with $K_{0}<0$ is oscillatory on J.

Remark 2. This theorem is a generalization of Theorem 2 in [2].
Evidently for any real number $a>0, b$ and any real x

$$
a x^{2}+b x \geqq-\frac{b^{2}}{4 a}
$$

Under the assumptions of Theorem 1 we get from (5)

$$
H(y(x)) \leqq H\left(y\left(x_{0}\right)\right)+\frac{1}{2} \int_{x_{0}}^{x} \frac{g^{2}(s)}{2 r(s)-|p(s)|-q^{\prime}(s)} \mathrm{d} s
$$

provided

$$
2 r(x)-|p(x)|-q^{\prime}(x)>0, \quad x \in J
$$

If instead of assuming the convergence of the integral $\int_{x_{0}}^{\infty}|g(s)| \mathrm{d} s$ which is evident from (4) we assume the convergence of the integral

$$
\int_{x_{0}}^{\infty} \frac{g^{2}(s)}{2 r(s)-|p(s)|-q^{\prime}(s)} \mathrm{d} s
$$

where $2 r(x)-|p(x)|-q^{\prime}(x)>0$ for all $x \in J$, we can easily formulate the following theorems:

Theorem 6. Suppose that $q \in C_{1}(J)$ and that for all $x \in J$

$$
\begin{aligned}
& 2 \varrho(x)-|p(x)| \geqq 0, \quad 2 r(x)-|p(x)|-q^{\prime}(x)>0, \quad Q_{i}(x) \geqq 0, \\
& \quad i=1,2, \ldots, n .
\end{aligned}
$$

If (3) holds, then any solution $y(x)$ of (1) which satisfies (2) and such that

$$
H\left(y\left(x_{0}\right)\right)+\frac{1}{2} \int_{x_{0}}^{\infty} \frac{g^{2}(s)}{2 r(s)-|p(s)|-q^{\prime}(s)} \mathrm{d} s \leqq K_{0}^{*} \leqq 0
$$

is oscillatory on J.
Theorem 7. Suppose that the hypotheses of Theorem 6 hold except for (3) which is replaced by (10). Suppose further that $p(x)>0, r(x)>0$ and that $F_{i}(z)$ satisfy (8) or (9). If

$$
\begin{equation*}
\int_{x_{0}}^{\infty}|g(s)| \mathrm{d} s<\infty \tag{13}
\end{equation*}
$$

then any solution $y(x)$ of (1) satisfying (2) and (4') with $K_{0}^{*}<0$ is oscillatory on J.
Theorem 8. Suppose that the hypotheses of Theorem 6 hold except for (3) which is replaced by (11). Suppose further that $p(x) \geqq 0, r(x) \geqq 0$.

If (13) holds, then every solution $y(x)$ of (1) satisfying (2) and (4') with $K^{*}<0$ is oscillatory on J.

Theorem 9. Suppose that the hypotheses of Theorem 6 hold except for (3) which is replaced by (12) and that $p(x) \geqq 0, r(x)-q^{\prime}(x) \geqq 0$ for all $x \in J$. If (13) holds, then any solution $y(x)$ of (1) satisfying (2) and (4) with $K_{0}^{*}<0$ is oscillatory on J.

REFERENCES

[1] J. Futák: On the properties solutions of non-linear diff. equations of the fourth order with delay, Acta Fac. R. N. Univ. Com., Math. 31, 1974.
[2] J. Futạak: Oscillation of solutions of a non-linear delay diff. equation of the fourth order, Arch. Math. 1, XI: 25-30, 1975.
[3] J. Futák, P. Šoltés: O nulových bodoch riešení lineárnej diferenciálnej rovnice 4. rádu, Práce a štúdie VŠD čis. 1, 1974.
[4] A. C. Lazer: The behaviour of solutions of the differential equation $y^{\prime \prime \prime}+p(x) y^{\prime}+q(x) y=0$, Pacific Journal of Math., 17 (1966), 435-466.
[5] P. Sultés : O niektorých vlastnostiach riešeni diferenciálnej rovnice 4. rádu, Spisy přírod. fak. Univ. J. E. Purkyně v Brně, 518 (1970), 429-444.
[6] P. Šoltés: A remark on the oscillatory behaviour of solutions of diff. equations of order 3 and 4, Arch. Math. 3, IX: 115-118, 1973.

P. Soltés
04154 Košice, Komenského 14
Czechoslovakia

