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A UNIFORM STRUCTURE 
FOR TOPOLOGICAL SPACES 

ALEXANDER ABIAN 

(Received February 2, 1977) 

We introduce below a uniform structure for topological spaces in order to make 
it possible to state and prove the classical theorem concerning the fact that a continu
ous function on a compact space is uniformly continuous. 

It is believed that the present notion of a uniform structure is less restrictive than 
the one introduced in [1] and which was further studied in [2], [3], [4]. 

Let X be a topological space and I an index set. Let (s^t)ieI be a family of open 
covers sdx of X. We call an element of s4% an i-neighborhood. Let S be a subset of X. 
We call Ei(S) the i-extended neighborhood of S if and only if: 

Et(S) = U{A | A e s4i and A n S * 0} 

i.e., EX(S) is the union of all the i-neighborhoods of every element of S. 
Based on the above notions, we introduce: 

Definition. A family (s^t)ieI of open covers s/t of a topological space X is called 
a uniform structure for X if and only if: 

(1) For every open set V of X and every xeV there exists an i-neighborhood At 

such that xeA{
 and Et(A^ _= V and 

(2) For every iel and he I there exists akel such that $tk refines both s/t and s/h. 
Next, we prove: 

Theorem. Let f be a continuous mapping from a compact topological space X with 
a uniform structure (s^di^iint0 a topological space Ywith a uniform structure (@j)jej. 
Then for every j e J there exists akel such that every k-neighborhood is mapped byf 
into some yneighborhood (i.e., f is uniformly continuous). 

Proof. Let je J be given. Since / i s continuous, clearly, for every xeX there 
exists an open set V of Xsuch that x e Vand Vis mapped by/into a j-neighborhood. 
But then, from (1) it follows that there exists an z(x)-neighborhood Ai(x) such that 

(3) i(x) elandxe Ai{x) and Em(Ai(x)) £ V. 
Clearly, (Ai(x))xeX is an open cover of X and since X is compact, X is covered by 

finetely many members, say, Ai(Xi), Ai(X2), . . . J . ( J 0f the cover. But then by (2) 
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there exists a kel such that stK refines -*/«,,)» ^\{x2y ...9sfiiXny To complete the 
proof, we show that every k-neighborhood is mapped by /into some j-neighborhood. 
Indeed, let Ak be a k-neighborhood and xeAk. Clearly, x is covered by one of the 
abovementioned finitely many open sets, say, Ai(Xm). Thus, xeAi(Xm) and in view 
of the refinement mentioned above Ak c Ei(Xm)(Ai(Xm)). But then from (3) it follows 
that Ei(Xm)(Ai(Xm)) s K Consequently, Ei(Xm)(Ai(Xm)) as well as Ak is mapped b y / 
into a j-neighborhood, as desired. 

Remark. We observe that condition (II) of [1] could be replaced by (2) above. 
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