
Archivum Mathematicum

Jiří Barot
A multiplicative functional on the commutative topological field

Archivum Mathematicum, Vol. 14 (1978), No. 4, 191--192

Persistent URL: http://dml.cz/dmlcz/107009

Terms of use:
© Masaryk University, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107009
http://project.dml.cz


ARCH. MATH. 4, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS 
XIV: 191—192, 1978 

A MULTIPLICATIVE FUNCTIONAL 
ON THE COMMUTATIVE TOPOLOGICAL FIELD 

Jlf t l BAROT, Brno 

(Received October 27, 1977) 

The aim of this paper is to determine some conditions for the commutative topo
logical field in order the functional F on T to be multiplicative. 

Definition. A set T of elements x,y,z,... is called a topological field, if: 
1) Fis a complex linear space with the identity element e, in which the operation xy 

is defined such that 

x(y + z) = xy + xz; (xy) z = x(yz); xe = ex = x. 

2) T is a topological field, where 
a) the mapping (k, x) -• kx of the product CxT into T is continuous, C is the 

set of complex numbers 
b) the mapping (x, y) -* x + y of the product TxT into T is continuous 
c) the mapping (x, y) -* xy of the product TxT into T is continuous 
d) the mapping x -> x~l of the space F\{0} into T is continuous. 

Lemma. [1]. Let P be a complex topological linear space, x0eP, x0 ^ 0. Then 
there exists on P a continuous linear functional f, f(x0) ^ 0 if and only if x0eP has 
a convex neighbourhoud not containing the zero element. 

Theorem. Let T be a commutative topological field, x0 e T, x0 ?- 0 has a convex 
neighbourhood not containing the zero element of T. Then there exists a multiplicative 
continuous linear functional F such that F(x0) ¥" 0. 

Proof. With respect to lemma, there is defined on Ta continuous linear functional 
f:T-*C such that f(x0) ^ 0. Let us consider the inverse element x0

l eT and 
XQ1 - keeT, keC. Suppose that x0 * - ke ?- 0 for every keC. Then for every k 
there exists (x0

x — ke)~l. Let us show that the function G;C-+C, G(k) = 
= /[w(A)] =/[(*o * — ke)~l] satisfies the following two conditions. 

1°. The function G : C -> C is analytic in the whole Gaussian plane. 
Indeed, dG(k)jdk = lim [G(k + h) - G(Xj]lh = lim {/[u(A + *)] - /[n(A)]}/A = 
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-»lim/{[M(A + h) - «W]/h} = lim/{[«a + lO «W] [«_1(/l) - .."'(A + /.)]/h} = 

= ifm/{[(*„ * - ^ + h) e ]" 1 [*-> - Ae]-1 (he)/h} =/[(^0"1 - Ae)'2] and 

lim/[(*o ' - M~ 2 ] = lim (l/A2)/[(*o'M - <T2] = 0. 
A-+00 A-+00 

2°. The function G : C -» C is bounded in the whole Gaussian plane. 
Indeed, for every \X\> Nthere is | G(X)\ = \f{u(X)~] | = \f[(x0 * - Ae)"1] | = 

= 0/1 A I) |f[(xo lIX - e)"1] I < (1/N) \fi(x0
llX - e)"1] | < (1/N) | f ( -e ) | and 

limf[(xo 1 - Ae)-1] =f[(xo * - V ) " 1 ] - T h u s t h e function G : C -• C, G(X) = 
A-*A0 

= f[(x0"
1 — Ae)*-1] is bounded in the neighbourhood of an arbitrary radius of 

the point X0. 
In accordance with Liouville's theorem (from the theory of functions of a complex 

variable) holds the assertion thatf[(x0
 x — Ae)"1] is a constant for every X. 

This constant is zero, since 
limf[(x0

 x - Ae)'1] = lim (lM)f[(xo lIX - e)"1] = 0. 
A~>oo A-+00 

Thus for X = 0 we getf[u(0)] =f(x0) = 0, which is the contradiction. 
It follows that XQ1 e C exists such that 

xoV — X0
 le = 0 i.e. x0 = X0e. 

From equalities x = X0e, y = \i0e we get f(x) = A0f(e), f(y) = }i0f(e), f(xy) = 
= ttoHo) f(e),f(x)f(y) = (X0fx0)f

2(e) and f(x)f(y) ~f(e)f(xy). Finally, denoting 
a = l//(e), F = af we see that F(xy) = F(x)F(j>) i.e. the functional F = af is 
multiplicative. 

Corollary. Let R be a complex commutative topological*ring with the identity 
element e, M c JR, M ?- R the maximal ideal. Let K0 <= R be a nonempty, open and 
convex set, which does not contain the elements of the ideal M a R. Then there exists 
a homorphic mapping q> : R -> C. 

Proof. Obviously, RjM is the commutative topological fields and the image of 
K0 c R in the canonical mapping of the topological ring R onto RjM is a nonempty, 
open and convex set in RjM which does not contain the zero element of RjM. The 
assertion follows from Theorem above. 
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