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THE DISTRIBUTION OF THE ESTIMATE 
OF ENTROPY AND ITS APPLICATIONS 

JAROSLAV MICHÁLEK, Brno 

(Received August 14, 1978) 

Let Xl5 X2,..., Xn be a random sample of a size n taken from the continuous 
random variable with a density function f(x). Then as it is known, the generally 
accepted method for estimating the unknown density function f(x) is that by means 
of a construction of a histogram. This method is based on the fact of statistical 

convergence of relative frequencies pi = —- to the estimated probabilities p(. The 
n 

speed of convergence is characterized by the dependence of dispersion Dpt on the 
size n of random sample. As it is known the order of Dp{ is n~x. 

Tarasenko in [4] suggested an other estimate of density function f(x) based on 
an order random sample. Let X(1), X(2),..., X(n) be the order random sample arised 
from the random sample Xx, X2,..., Xn. We shall restrict our attention to the case, 
when f(x) = 0 for x $ [a, b], -co < a < b < oo. Then the estimate f(x) of f(x) 
given by Tarasenko is 

where 

Axj = Xu+1) - X0) forf = 0, 1, ...,n 

X(0) = a, T(n+i) = b; 

n(x, AxJ) = 1 for x e (Xu), Xu+i)]> j = 0, 1, ..., n - 1 

n(x, Axj) = 0 for x $ (XU)i Xu+i)]> j = 0, 1, . . . , « - 1 
n(x, Axn) = 1 for X e (X(n), b) 

n(x, Axn) = 0 for x $ (X(„), b) 

The estimate f(x) estimates the density function f(x) between two neighbouring 
ordered observations as 

I = l/[(« + 1) Axjl 
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Tarasenko in [4] shows that the order of dispersion Df) is w~2. Consequently, the 
dispersion of the estimate/} decreases no slower (with increasing w) than that of pt. 
This eventually means that the estimate (1) is at least no worse than a histogram. 

The very interesting outcome of the representation (1) is that it gives the possibility 
of estimating an entropy H of the measured variable directly from observations 
Xlf X2, X3,..., Xn. If we calculate the entropy integral for estimate f(x), we get 

(2) H = - f f(x)logf(x)dx = log(w + 1) + —Lr- t log Axj9 
- o o W -t- 1 i = - 0 

This relation simply means that to obtain the statistical estimation of the differential 
entropy, one needs to measure only the distances between neighbouring ordered 
observations Xt, X2, ..., X„. 

A special attention must be paid to the case, when the density function f(x) 
is that of uniformly distribution over the interval [0, 1], because the random variable 
with arbitrary distribution can be transformed to the random variable uniformly 
distributed over the interval [0, 1], Therefore it is necessary for an other statistical use 
of the statistic H to know the distribution of H under the condition that thef(x) is 
the density function of uniform distribution over the interval [0, 1]. Tarasenko 
approximated the distribution of the statistic H under above given condition by 
means of a normal distribution N(n, a2) with parameters: expected value /z = EH 
and dispersion o2 -= DH. He has proposed this approximation on the basis of 
"a mathematical experiment" performed on a computer. 

The distribution of the statistic H can be described by its characteristic function 
<p(t) given by the following theorem. 

Theorem 1: Let Xl9X2, ..., Xn be random sample of the size n taken from 
uniformly distributed random variable over an interval [0, 1]; X(1),X(2), ...,X{n) 

order random sample is arised from random sample Xi9 X2,..., Xn; X(0) = 0, 
X(n+1) = 1 and Axj = X(i+1) - XU),j = 0, 1, ..., w. 

Then the statistic H given by (2) has characteristic function 

r+1í i+-4т) 
<3) «*0 , . rl , ., 

T(n + 1 + it) 
for fe(— oo, oo). 

Propf: The statistic H can be written in the following way 

(4) H = log (it + 1) + H0l(n + 1) 
where 

(5) H0 = £ log Axj = £ log (Xu+., - Xu>). 
,=0 , = 0 
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First we shall find the characteristic function <p0(t) of the statistic HQ. 
We receive 

(6) cp0(t) = Ee ,»" = Ee"i . , o g U u + '> -*< J > ) = 

- = ] . . . ] ei',So">«^--^>g(x1, ...,xn)dXi, ...,dxn, 
-00 — 00 

where x0 = 0, xn+1 = 1 and g(xx, ..., xn) is the density function of the order random 
sample X(1), X(2),..., X(n). By [3] or [6], the density function g(xi9 ...9xn) can be 
written in the form 

g(*i, x2 , . . . , xB) =- n! h(xi) h(x2) ••• h(*n) for -oo <xx<x2< ...<xn<co 

g(*i - *2> •••> *») = 0 for the others xi9 xl9 ..., xn 

where 
h(x) = 1 for x e [0, 1] 
h(x) = 0 for x ^ [0, 1] 

is a density function of uniform distribution over the interval [0,1]. 
Considering the expression (7) for g(xx, ..., xn)9 we obtain from (6) 

(8) <P0(t)~n\ J ... J el"r,?o108(^+1^)dxl...dxIJ. 
Q<ixi<...<xn<il 

Introducing the substitution 

h == *i+i ~ XJ for; = 1,2,...,« - 1 
rn - 1 - *„ 

we reduce (8) to 

<p0(0 = n\ J ... f eW'^^-.-.V'M... . . d.„, 
M 

where 

M = {(* ls..., *„) 10 < t < 1 for j = 1, 2,. . . , n and 0 < £ * < 1} 
I«i 

Hence, after simple modifications, we receive 

<7>o(0 - n! J ... J(l - t t/(flt^)dtx ...dtn. 

Now, using the theorem on repeated integrals, we obtain 

1 l - f i f l - ( f i + ... + fn.-2) l - ( . i + . . . + t „ - i ) 

?o(0-» .K( J *-•...( I <_-*( J <?* 
o o o o 
x(l-i./dtB)dt„_1)...dt2)d(1. 



Using a notation 
* - i 

sk = 1 - £ tj9 k = 2,3, ...,w, 
I=i 

for which the recurrent formula 

sk ~ sk -1 ~~ t* -1» K -= 2, 3, ..., n 

is valid, we receive 

(9) <p0(0 = «! K ( J.S...(7"tf-i( J. .(- .- 0"dgdfn_1)...dr2)d(1. 
o o o o 

Substituting in the A>th integral of the expression (9) variable yk for tk/sk for 
k =- n9 n — 1, . . . , 2,1 we obtain consecutively by integrating step by step 

<!>o(0 = n\\ .««( J ._ ... (7 it"-2(7'^ ,'+ 1'"-l d<-l)d<„-2) - dt2)dt! x 
o o o o 

x K d - yj'dyn = ... = n\{\ j>_(i - y*r-k+1)"+n-kdyt = 
o * = 1 o 

= n\ fl /*(« + 1, (n - fc + 1)(1 + «)) = n\ f\ p(l + if, k(l + if)). 
*=i *=i 

Hence, by means of the well-known relation 

r(zl)r(z2) 
ß(Zl,Z2) = 

Д-i + *_) 

between beta and gamma functions, we receive the final expression for the characte
ristic function (p0(t) - n the form 

(10) <p0(t) = n\ rn+i(\ + it)/r((n + 1) (1 + it)) 

for te(—oo, oo). 
The statistic H is a linear function of the statistic H0 which is given by (4). Using 

known properties of characteristic function and (10), we can write the characteristic 
function ^ ( 0 of H in the following way 

(11)9(0 - eitlo*in+i)(p0(t)l(n + 1)) = n\(n + l) f t_P+1(l + ~fr)lr(n + * + lt)' 

Thus the theorem is proved. 
Corollary 1: The statistic H given by (2) has under the condition mentioned 

in Theorem 1 the expected value # 

n 

- 1 (12) Eй = log(п + l ) - £ j 
i-i 
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and dispersion 

(13) ЛЯ-IT 
n n 

n + 1 T ' 

Proof: First, we shall find the expected value and dispersion of the statistic H0 

given by (5) which has characteristic function q>0(i) given by (10). 
Let us put 

\j/(t) = log <p0(t). 

Then we receive from the properties of the characteristic functions (see [2]) the 
relations 

(14) 

and 

(15) 

_ H 0 = І 

DH0 = 

-i <Ж0 
dř 

dV(0 

1 = 0 

dř t=o 

Now, we shall calculate these derivatives. We put z, = 1 + it and z2 = 
= (n + 1) (1 + it). Using (10) we obtain 

•KO = log n\ + (n + 1) log T(z.) - log T(z2) 
and 

(16) - d T ~ '(" + 1>L/X-_>—d_; r(z2) dz2 J 
Applying the Gauss relation (see [5] p. 247) 

1 dГ(z) _J(__-___W 
r(z) dz 

which holds for all complex numbers z such that Re z > 0, to (16) we receive after 
simple modifications 

m) 
dí 

oo e - Іtx 

= i(n + 1) J -jf—- (e-"*-*" - 1) dx. 

Hence 

<wo 
dí 

6 e x - 1 

_ř(n + l ) J . _ 
1 = 0 o e — 1 

dx 

and substituting >> for e* we find successively 

mo (17) - i ( Я + l)ji ;-_Ç.y — ld^_ 
í = 0 o У — i dř 

- -i(n + 1)ï "_> "* = -Қn + 1)îj 
0 „=2 i « l 

- 1 
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Further differentiating (16), we obtain 

fpl . -(„ + »***£*! + („ + 1}^gIM 
<" Az\ dz\ 

Using here the equality (see [5] p. 241) 

d2 log F(z) ^ * 1 
dz2 / = o (z+j)2" 

we receive after simple modifications 

à2ф(t) 
-(n + 1)( X (1 + ií +JГ2 - I (n + l)[(n + 1)(1 + it) +JУ2. 

dt2 v ' j ^ V " J^o 

Hence 

dV(0 (18) 
dí2 = (» + i ) ( E ( i + ; ) ~ 2 - I ( « + i)(и + i + jГ2) = 

0 / = 0 j = 0 

= (я'+ l)(п t (1 + 7 y 2 - (n + 1)1 (1 + JУ2) = 
,/ = o ;=o 

-=и(и+l)-£-(п + l )2£r2 . 
6 J = 1 

Using (14) and (15) we obtain from (17) and (18) 

I=i 

DH0~(n + l)2tr2--n(n + l)?~-. A 6 
Considering (4), we receive from here 

EH = log (/i + 1) + .Etfo/Ot + 1) = log(n + 1) - t j " \ 
1=i 

and 
~ ~ A -, n n2 

DH~(n+ iy2DH0 = I r 2 - — — - — . 
y = l « + 1 6 

Consequently, the corollary is proved. 
The distribution of the statistic H is then given by Theorem 1. By Corollary 1 

there are given basic characteristics of this distribution. To find the density func
tion fn(x) relevant to the characteristic function (p(t), we must use the Fourier 
transformation and calculate according to the formula 

(19) fu(x)^~ ] t--"9(t)dt. 
2л _J

X 
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But to solve this integral is a matter by no means easy. Further we shall derive 
an approximation fA(x) of density function fH(x). First we shall approximate the 
characteristic function <p0(t) of the statistic H0 = (n + \)H - (n -f l)log(w + 1) 
by means of the function \j/A(t) so that we replace F(z) in (10) by the approximation 
SJ2KZZ"1/2C"Z given by Stirling's formula (see [1] p. 552). In this way we obtain 
after simple modifications 

W ) = <_.(- + //)-*" e" , f ("+1)tof( , ,+ l ), 
where 

cn = n\(2nfnl(n + l)rt+*. 

The function \j/A(t) is not a characteristic function because ^ (0) = cn # 1. The 
deviation *t/A(0) from 1 is caused by the approximation by Stirling's formula. To 
remove this deviation, we shall further deal with function 

< P A ( 0 = C ; 1 ^ ( 0 , 

which is an approximation of the characteristic function (p0(t). Hence using (4), 
we can write an approximation q>A(t) of the characteristic function (p(t) of the 
statistic H in the form 

VÁQ -'•"'"•^(тп-)-(,+7ттГ 
From here and by (19) we can express the density function fA(x) being found 
approximation of density function fH(x) and a density function corresponding to the 
characteristic function <pA(t) as follows 

лw_J_Ь-Ҷ1 + _A_)-'-d, 
Substituting — 2(n + 1) s for t in the last integral we obtain 

n -4- 1 °° 

(20) fA(x) = ILZ— j e2 i ( , , + 1)5*(~2/s)-±nds. 

Now, if we consider that the characteristic function xn(
s) of the Pearson's %2 

distribution with n degree of freedom is given by 

Xn(s) = (1 - 2is)-±n for s e ( - oo, oo) 

and the density function hn(x) correspoftding to this characteristic function is given 
by 

(21) hn(x) == x*-1 c " * / [ 2 * r ( y ) l f o r x 2- 0, 

hn(x) = 0 for x < 0, 
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then we can reduce (20) to the final form as follows 

n + 1 
(22) ЛW - í c2«"+1)sxx„(s)às = 2(n + l )n я (-2( П + l)x) 

and then using (21) we obtain 

(23) fA(x) = (n + \fn (-xfn~x e(w+1)JC for x S 0 

fA(x) = 0 for x > 0 

which is the found approximation of the density functionffl(x) of the statistic H under 
conditions of Theorem 1. 

It follows from (22) and (23) that the distribution of the statistic K = -2(n + 1) H 
can be approximated by Pearson's x2 distribution with n degree of freedom. A com
parison of the approximation given by (23) and that based on the normal distribution 

n«ю 

Fig. 1 

given by Tarasenko in [4] is in Figure 1 for a random sample of size n = 10. In this 
X 

figure there is given the distribution function FA(x) = J fA(y) dy and that of normal 
— oo 

distribution N(EH, DH). We can see that the distribution given by density function 
fA(x) has for large size of random sample the expected value greater than EH. Really 

(24) lim EH = lim (log (n + 1) - ^ Г 1 ) = - C = -0,5772, 
и-*oo и-*oo j=l 

where C is Euler's constant, and the expected value distribution with density function 
fA(x) converges for n -> oo to the —0,5, because the expected value of Pearson's x2 

distribution is equal to the degree of freedom. Then the expected value of the 

distribution with density function fA(x) is 
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From (24) it can be seen that H has a bias asymptotically equal to - C = -0,577 
and further that a statistic which has density function fA(x) and which can be approxi
mated by the statistic H, has a bias asymptotically equal to —0,5 (thus smaller than 
statistic H). 

All of the foregoing enables us to propose nonparametric entropy test of goodness-
of-fit. For testing the hypothesis: "the random sample Yi9 Y2, ..., Yn is from 
distribution with distribution function G(y)\ it is necessary: 

a) to transform the random sample Y{, Y2, ..., Yn into random sample 
X!, X2, ..., X„ taken of uniformly distributed random variable over an interval [0, 1] 
under the condition that the hypothesis is true. This transformation is 

X,. = G(Y.), *'= 1,2, ...,«. 

b) to calculate the order random sample X(1), X(2), ..., X(n); to calculate the 
statistic H by (2) and statistic K = -2(n + 1) H 

c) since the uniform distribution has a maximum value of entropy under interval 
[0, 1] of possible values of x's we reject the hypothesis if H is "small enough". It 
means, we reject the hypothesis on the significant level a if 

K > xl-M, 

where xl-*(n) is (1 — a) — quantile of Perason's x2 distribution with n degree of 
freedom. In the case K ^ x\~*(n) we accept it. 
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