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A CHARACTERIZATION OF DISTRIBUTIVE 
LATTICES BY TOLERANCE LATTICES 

IVAN CHAJDA, Prerov 

(Received June 6, 1978) 

The purpose of this short paper is to show how lattices of compatible tolerances 
can be used for the classification of varieties. 

Let 91 = (A, F) be an algebra. A binary relation T on A is called a compatible 
tolerance provided it is reflexive, symmetric and compatible (it means that <ai5 6f> € T 
for i = 1, ..., n always imply (f(ax,..., an),f(bx,..., bn)y e T for every n-ary / € F, 
n = 1). Likewise in [2], denote by LT(9l) the set of all compatible tolerances on an 
algebra 91. As it was proved in [2], LT(^X) is an algebraic lattice with respect to the 
set inclusion for every algebra 91. If oT is a variety of algebras, we say that *V has 
(infinitely meet) distributive tolerances provided LJT(9J) is (infinitely meet) distributive 
lattice for every 91 e Y. 

Theorem. Let Ybe a variety of lattices. Then the following conditions are equivalent: 
(a) Y is a variety of distributive lattices, 
(b) "T has distributive tolerances, 
(c) Y has infinitely meet-distributive tolerances. 

Proof, (a) => (c) follows directly by Theorem 16 in [2] and (c) => (b) is trivial. 
Accordingly, it remains only to prove (b) => (a). Let Y not be a variety of distributive 
lattices. As it is known, then Y contains either the non-distributive modular five 
element lattice M5 or the non-modular five element lattice, i.e. the pentagon Ns. 

Suppose M5 e Y. Then clearly also the lattice 2 on Fig. 1 is contained in Y. 
We shall show that 2 has a non-distributive lattice LT(2). 

Call B £ 2 to be a block of the tolerance T provided x9 y e B always implies 
(x, yyeT and B is a maximal subset of 2 with this property. 

Now, we can consider the three tolerances TX,T29 T3 on 2 determined by the 
blocks: 

Tx has blocks Bx = {1, x, a}, B2 = {0, a, b, c, x}9 

T2 has blocks Cx = {1, x, b} and B2, 
T3 has blocks Dx = {1, x, c} and B2. 



It is clear that Tx A T2 A T39 Tx, T2,T3, Txv T2V T3 form the non-distributive 
sublattice Ms of LT(2). Hence LT(2) is not distributive. 

Suppose N5 e Y. Then clearly the lattice 2* on Fig. 2 is contained in Y. Consider 
Tt>T2, T3eLT(2*) determined by the blocks: 

Tx has blocks Bx == {1, x, a}, B2 = {0, a, b9 c, x). 
T2 has blocks Ct -= {1, x, ft, c}, 2?2, 
r 3 has blocks Dx = {1, x, c} and B 2. 

It is clear that r 3 g T l 5 further Tt is noncomparable with T2 and r 3 and Tx A T2 =* 
* 7i A T 3, Txv T2 = Txv T3. Hence, r l f T 2, T3 generate the non-modular 
sublattice N5 of i,r(£*). Accordingly, ^ has not distributive tolerances in any case. 

Q.E.D. 

A C K N O W L E D G E M E N T 

I would like to express my thanks to Dr. H.-J. Bandelt for his suggestion for the 
formulation of this result. 
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