Archivum Mathematicum

Ivan Chajda

A characterization of distributive lattices by tolerance lattices

Archivum Mathematicum, Vol. 15 (1979), No. 4, 203--204

Persistent URL: http://dml.cz/dmlcz/107042

Terms of use:

© Masaryk University, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

A CHARACTERIZATION OF DISTRIBUTIVE LATTICES BY TOLERANCE LATTICES

IVAN CHAJDA, Přerov
(Received June 6, 1978)

The purpose of this short paper is to show how lattices of compatible tolerances can be used for the classification of varieties.

Let $\mathfrak{A}=(A, F)$ be an algebra. A binary relation T on A is called a compatible tolerance provided it is reflexive, symmetric and compatible (it means that $\left\langle a_{i}, b_{i}\right\rangle \in T$. for $i=1, \ldots, n$ always imply $\left\langle f\left(a_{1}, \ldots, a_{n}\right), f\left(b_{1}, \ldots, b_{n}\right)\right\rangle \in T$ for every n-ary $f \in F$, $n \geqq 1)$. Likewise in [2], denote by $L T(\mathfrak{H})$ the set of all compatible tolerances on an algebra \mathfrak{A}. As it was proved in [2], $L T(\mathscr{H})$ is an algebraic lattice with respect to the set inclusion for every algebra \mathfrak{N}. If \mathscr{V} is a variety of algebras, we say that \mathscr{V} has (infinitely meet) distributive tolerances provided $L T(\mathfrak{H})$ is (infinitely meet) distributive lattice for every $\mathfrak{H} \in \mathscr{V}$.

Theorem. Let \mathscr{V} be a variety of lattices. Then the following conditions are equivalent:
(a) \mathscr{V} is a variety of distributive lattices,
(b) \mathscr{V} has distributive tolerances,
(c) \mathscr{V} has infinitely meet-distributive tolerances.

Proof. (a) \Rightarrow (c) follows directly by Theorem 16 in [2] and (c) \Rightarrow (b) is trivial. Accordingly, it remains only to prove (b) \Rightarrow (a). Let \mathscr{V} not be a variety of distributive lattices. As it is known, then \mathscr{V} contains either the non-distributive modular five element lattice M_{5} or the non-modular five element lattice, i.e. the pentagon N_{5}.

Suppose $M_{5} \in \mathscr{V}$. Then clearly also the lattice \mathfrak{L} on Fig. 1 is contained in \mathscr{V}. We shall show that \mathfrak{L} has a non-distributive lattice $L T(\mathbb{I})$.

Call $B \subseteq \mathcal{L}$ to be a block of the tolerance T provided $x, y \in B$ always implies $\langle x, y\rangle \in T$ and B is a maximal subset of \mathcal{L} with this property.

Now, we can consider the three tolerances T_{1}, T_{2}, T_{3} on \mathcal{L} determined by the blocks:
T_{1} has blocks $B_{1}=\{1, x, a\}, B_{2}=\{0, a, b, c, x\}$,
T_{2} has blocks $C_{1}=\{1, x, b\}$ and B_{2},
T_{3} has blocks $D_{1}=\{1, x, c\}$ and B_{2}.

It is clear that $T_{1} \wedge T_{2} \wedge T_{3}, T_{1}, T_{2}, T_{3}, T_{1} \vee T_{2} \vee T_{3}$ form the non-distributive sublattice M_{5} of $L T(\mathscr{L})$. Hence $L T(\mathscr{L})$ is not distributive.

Suppose $N_{5} \in \mathscr{V}$. Then clearly the lattice \mathscr{L}^{*} on Fig. 2 is contained in \mathscr{V}. Consider $T_{1}, T_{2}, T_{3} \in L T\left(£^{*}\right)$ determined by the blocks:
T_{1} has blocks $B_{1}=\{1, x, a\}, B_{2}=\{0, a, b, c, x\}$.
T_{2} has blocks $C_{1}=\{1, x, b, c\}, B_{2}$,
T_{3} has blocks $D_{1}=\{1, x, c\}$ and B_{2}.
It is clear that $T_{3} \subseteq T_{2}$, further T_{1} is noncomparable with T_{2} and T_{3} and $T_{1} \wedge T_{2}=$ $=T_{1} \wedge T_{3}, T_{1} \vee T_{2}=T_{1} \vee T_{3}$. Hence, T_{1}, T_{2}, T_{3} generate the non-modular sublattice N_{5} of $L T\left(£^{*}\right)$. Accordingly, \mathscr{V} has not distributive tolerances in any case.
Q.E.D.

ACKNOWLEDGEMENT

I would like to express my thanks to Dr. H.-J. Bandelt for his suggestion for the formulation of this result.

Fig. 1

Fig. 2

REFERENCES

[1] Chajda I., Zelinka B.: Tolerance relations on lattices, Casopis pro pěst. matem. 99 (1974), 394-399.
[2] Chajda I., Zelinka B.: Lattices of tolerances, Časopis pro pěst. matem. 102 (1977), 10-24.

1. Chujda
 75000 Prerov, třida Lidových milici 22
 Czechoslooakia

