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SOME PROPERTIES OF AN ORDERING RELATION 
ON CERTAIN CLASSES OF FUNCTORS 

JUDITA LIHOVA, Koliee 

(Received September 21,1978) 

Let 0* and P be the class of all partially ordered sets and topological spaces in the 
sense of tech, respectively. Consider a mapping F: 9 -» P such that for every 
(A, g)<,e 0>9 F(A9 S) is a topological space with the underlying set A and with a topo
logy convexly compatible (or convexly weakly compatible) with the ordering jg, 
(for these notions, cf. [3]). Such a mapping will be called an a-mapping (or a jS-map-
ping, respectively) provided that F is a covariant functor of the category 'p of all 
partially ordered sets with isomorphisms as morphisms to the category 3C of all 
topological spaces with homeomorphisms as morphisms, putting F(<p) « <p for 
every q> e Mor ^p. Denote by a(^, &) and J?(#, &~) the class of all a- and jS-mappings, 
respectively. On these classes there can be defined an ordering relation in a natural 
way. The aim of this paper is to investigate some properties of the partially ordered 
classes a(^, $~)9 p(0>> &~). The idea of the investigation came from [2], 

1. PRELIMINARIES 

For the sake of completeness let us recall some definitions introduced in [3]. 
Denote by 2P the system of all subsets of a set P. 

1.1. Definition. Let P be a given set. A mapping u : 2P -+ 2P is said to be a topology 
on P9 if the following three axioms are satisfied: 

(1) u0 = 0, 
(2) McP=>Mcz uM9 

(3) Mt c M2 c P=>uMx c uM%. 
If u is a topology on P9 the pair (P9 u) is called a topological space. The system of alt 
topologies on P is denoted by T(P). 

1.2. Definition. A set O c P is said to be a neighborhood of an element $m$ 
in the space (P9 u)9 ifx$ «(P - 0). The notation Du(x) is used for the system vfijtt 
neighborhoods of x in (P9 u). 
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The following statement enables one to introduce a topology into a set P 
<rf. [1], 4.1). 

1.3. Theorem. Let P be a set and let D(x) be a nonvoid family of subsets of P, 
assigned to each element x e P, satisfying: 

(1) OBD(X)=>XBO, 

(2) Oc Ol9 OeD(x)^OteD(x). 
If we define a mapping u : 2P -> 2P in such a way that x e uM(M c P) // and only 
if P — M $ D(x), then u is a topology on P and for each xeP it is Du(x) = D(x). 

1.4. Definition. Let (P, u), (Q, v) be topological spaces, q> a mapping of P to G. 
Then cp is called a homeomorphism of (P, u) onto (Q, v) if <p is one-to-one, onto and 
(p(uM) = v(<p(M)) for every M c P. 

It is easy to verify that the following theorem holds. 

1.5. Theorem. Let (P, u), (Q, v) be topological spaces. A one-to-one mapping <p 
of P onto Q is a homeomorphism of (P, u) onto (Q, v) if and only if Dv(<p(x)) = 
= {(p(0) : OeDu(x)} for every xeP. 

1.6. Definition. Let (A, S) be a partially ordered set. A topology u on A is said 
to be convexly compatible with the ordering ^, if it has the following property: 

(a) If a, be A and if U is a neighborhood of a with b$U, then there exists a convex 
neighborhood V of a such that b$V. 

1.7. Definition. Let (A, S) be a partially ordered set. A topology u on A is called 
convexly weakly compatible with the ordering :g, if it has the following property: 

(P) If a and b are comparable elements of A and U is a neighborhood of a with b$U, 
then there exists a convex neighborhood V of a such that b$V. 

Let (A, S) be a partially ordered set. Denote by OL(A, ^ ) and P(A, S) the set of all 
topologies on A, which are convexly compatible and convexly weakly compatible with 
the ordering <£, respectively. Clearly a(A, = ) c f}(A, = ) c T(A). For u, v e T(A) set 
u g v if and only if uM c vM for every M c A. Then T(A), and hence also <x(A, <;) 
and p(Af £), turn out to be partially ordered sets. The following theorems hold 
(1.8 is easy to verify; for 1.9 and 1.10, cf. [4]). 

1.8. Theorem. The set T(A) of all topologies on a set A is a complete lattice with re
spect to the relation <| defined above. A topology u is a meet of {u( : i € 1} c T(A) 
if and only if one of the following two conditions is fulfilled: 

(a) uM = r\{utM : iel} for every Mc A, 
(b) Du(x) = u{Dm(x) : i € 1} for every x e A, 

and dually for the join. The least element ofT(A) is a topology u° such that u°M = M 
for every M c A. The greatest topology u1 satisfies ul0 = 0, uxM = A for every 
0 + I c i 
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1.9. Theorem. Let (A, <>) be a partially ordered set. The set p(A> £) is a closed 
sublattice of the complete lattice T(A). 

1.10. Theorem. Let (A, <;) be a partially ordered set. The set QL(A9 £) is a complete 
lattice. The meet of a nonempty subset {u( : iel} of<x(A> S) in <*(A> £) Is the same as 
in the complete lattice T(A). The join w of {ut : iel} in <x(A, £) can be described as 
follows: for each ae A, 

Dja) = {O e Dv(a) : O -o n{[K] : Ve Dv(a)}}> 

where v is the join of {u( : i e 1} in T(A) and [V] is the convex hull of V in (A9 g) . 

Adopt the following convention: The meet and the join in T(A) will be denoted 
by the symbols A, v, respectively; the symbol V* will be used for the join in a(A9 g). 

We shall need the following theorems (cf. [4]): 

1.11. Theorem. The lattice p(A, ^ ) is completely distributive. 

1.12. Theorem. If card A ^ 2, then the lattices OL(A, g), p(A, <£) have card Al 
atoms. 

1.13. Theorem. Let { be a cardinal number and let (A, <£) be an antichain of the 
cardinality {. Then the lattices a(A, ^ ) , p(A, ^ ) have £(£ - 1) dual atoms. 

2. THE PARTIAL ORDERING ON THE CLASSES *(P93T\ P(0>>F) 

Let us denote by & the class of all partially ordered sets and by 0~ the class of all 
topological spaces. 

2.1. Definition. An a-mapping is a mapping F of & into 9* such that the following 
conditions are fulfilled for each (A, £) 6 &: 

(i) F(A, ^ ) is a topological space with the underlying set A and with a topology 
which is convexly compatible with the ordering £ on A. 

(ii) Ifq> is an isomorphism of (A, £) onto a partially ordered set (Ai9 ^x)9 then <p 
is a homeomorphism of F(A, ^ ) onto F(Al9 ^i). 

A fi-mapping is a mapping of & into 3T satisfying (i*), (ii)jbr every (A9 :£) € 9S 

where (i*) is obtained from (i) replacing "convexly compatible" by "convexly weekly 
compatible". 

We shall denote by a(^, 3T) and p(P9 ST) the class of all a- and jj-mappings, 
respectively. Clearly oc(0f

9 F) cz p(&, 3T). Elements of p(0>9 St) will usually be 
denoted by capital Latin letters JF, G, //and for the topology of F(A9 £ ) and G(A9 S) 
and H(A, g ) the notation/(4, £ ) md g(A9 ^) and h(A9 £ ) respectively, will be 
used. 
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The classes a(0>, r)9 P(99 0*) can be partially ordered as follows: 

2.2. Definition. If F, Ge a(0>9 0") or p(0>9 &*)9 we put F g G if and only if 
f(A9 sS) £ g(A9 S)M every (A9 g)e0. 

At first we will show that every subclass of a(0>9 0") has supremum and infimum 
in a(0>9 r) and analogously for p(99 9). 

Let F°9F
1 be mappings 0> -> 9* defined as follows: for every (A9 ^ ) e 9 it is 

F\A9 g ) = (A9 u°)9 F
l(A9 <;) = (A, ul)9 where u° is the least and u1 the greatest 

topology on A. It is easy to verify that the following lemma holds. 

2.3. Lemma. Let F°, F1 be mappings as above. Then F°, F1 e a(0>9 P) and F° is 
the least, F1 the greatest element of p(99 9). 

2.4 Lemma. Let {Ft : / e /} be an arbitrary nonempty subclass ofa(0>9 9). Define 
a mapping F : 9 -* 0" in the following way: 

(A9 g ) € 9 =-> F(A9 g ) = (A, v*{/f04, = ) : i € /}). 

Then Fe a(&9 9) and F = sup {F{ : / € /} in the class a(0>9 9). 
Proof. It is obvious that Fsatisfies (i). From the fact that each F{ fulfils the condi

tion (ii) from 2.1 it follows that F fulfils this condition as well. Evidently, F = 
= sup {F*: / € /} in a(0>9 9). 

The proofs of the following two lemmas are straightforward. 

2.5. Lemma. Let 0 * {Ft : i e /} c a(0>9 0"). Define a mapping G : 9 -» ST 
as follows: 

(A9 £)e <?=> G(A9 = ) = (A, K{f£A9 £) : /e /}) . 

Then Gea(0>9 0")9 G = inf {Ft : / e / } in the class a(0>9 0~). 

2.6. Lemma. Let 0 # {F, : / e /} c ^ ( ^ , ,T). Zte/w<? mappings F9G : 0> -+ 9 
as follows: 

(A9 £ ) e f ** F(^, g ) = (,4, v { / ^ , = ) : /e/}), 

G(A9 S) ~ (A, A{f(A9 £):iel}). 

flta F, C? € j3(J», ̂ ) , F = sup {Ff : / € /} in j8(^, 9\ G = inf {F,: / e /} in fi(0>9 r). 

Further we deal with the modularity and distributivity of the classes a(0k
90')f 

fi&.r). 
2.7. Theorem. The partially ordered class a(0>9 &) does not satisfy the modular 

identity. 
Proof* Let (A9 <*) be a partially ordered set represented by the diagram in Fig. 1. 

Define topologies u9 v9 w on the set A = {o9 /, a, b9 c} as follows: 
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йи(а) = {0<= А:0=> {о,а}огО=> {а,с}}, 
ОЛа) ~{0<=Л:Оз{а,/}}, 
Д » = {О с Л : О э {о, а}}, 

АД» = />„(-) = И^г) = {Л} Гог г е Л, г + а. 

Fig. 1 

Then evidently the topologies u9 v, w are convexly compatible with the ordering on A 
and it holds u < w9 u V*(v Aw) + (u VV) Aw. 

Define mappings F9 G9 H : 0> -> ̂  in the following way: 
(1) If a partially ordered set (Ai9 <» t) is isomorphic to (A, 51) and <p is the unique 

isomorphism of (A9 £) onto (A^ ^t)9 set F t ^ , JS )̂ « (>tlf ut)f G(Ai9 gj) = 
(A[t, t^), H(AX, <I i) * (Ai, H>t), where wt, ulf H^ are the topologies on At such that 
xe ^ => />„.(*) - {0 cz A> : q>-\0) € .Djfor1^))}, />*(*) - {O c ^ : ^ ' ( O ) 6 
€ A,(<?T'(*))}> A.,(*) = { 0 ^ ^ : 9~\0) € I>w(<?r *(*))}. 

(2) If a partially ordered s£t (A.t, <; t) is not isomorphic to (A9 g) , set FC^, <f A) ** 
= G^i, 51-) a* jfiT^i, ^ O = (Aj, w°), where w° is the least topology o n ^ , 

Obviously F9 G, H e a(0>9 $")9 F < H. Denoting the supremum (infimum) in 
a(^, /T) by the symbol V(A), we have (F V (G A H))(A9 £) « (A9 u v%v A w))9 

((FvG) A H)(A9 g ) = (A9 (u vav) A w)9 hence Fv (G A H) + (FV G) A tf. 

Using 1.11 and 2.6, we have the following theorem. 

2.8. Theorem. The partially ordered class p($P, &*) is completely distributive. 

3. COVERING RELATION 

Let F9 G be a-mappings, F < G. If there is no element H€tx(0>9 SJ such that 
F < H <G9 then we shall say that F is covered by G or that G cover! FmA we shall 
write F -<• G. If F <XG9 then the mapping G mil be also called m atoltm cm* J* 
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and the mapping F a dual atom under G in a(#, ^). The class of all atoms over F 
and dual atoms under Fin a(0*, ^) will be denoted hy$t*(F) andj^J(F), respectively. 
A similar terminology and notation will be used also for ^-mappings. 

In this section a necessary and sufficient condition for an a-mapping G to cover 
an a-mapping Fin a(#, 2T) is given. An analogous result is proved for ^-mappings. 
It is shown that the classes J#a(F), s/fi(F), st&F), s/'fi(F) may be empty, but it can 
also happen, that they are proper classes. 

3.1. Lemma. If F,Ge a(0>, &), F <* G and for some partially ordered sets 
(At, £t), (A2, S2) it isf(At, Si) < g(At, Si), f(A2, S2) < g(A2, Si), then 
(Ai9 Si) and(A2, Si) are isomorphic. 

Proof. Suppose the assumptions of 3.1 hold but (At, Si), (A2, S2) are not 
isomorphic. Define a mapping H : 0» -* $" as follows: 

If a partially ordered set (A, S) is isomorphic to (At, Si), we put H(A, S) = 
«• F(A, S), in the opposite case we set H(A, S) = G(A, SY Then evidently He 
e <t(&, &) and it is F < H < G, contrary to F -<* G. 

3.2. Lemma. If F, Ge f}(0>, $~), F <fi G and for some partially ordered sets 
(At, <^), (A2, S2) it isf(At, <^) < g(Al9 Si), f(A2, Si) < g(A2, Si), then 
(Ai, Sd and(A2, Si) are isomorphic. 

The proof is analogous to that of 3.1. 

Let (A, 51) be a partially ordered set and let u, v be topologies on A with u < v. 
Consider the following condition for (A, S), u,v and y e {a, /?}: 

(py) If wey(A, S) and u < w < v, then there exists an isomorphism of (A, S) 
onto (A, S) which is not a homeomorphism of (A, w) onto (A, w). 

3.3. Lemma. Let F,Gea(0>, F), F -<* G. If (A, S) is a partially ordered set 
with f(A, S) < g(A, S), then for (A, S), f(A, S), g(A, S), the condition (p.) is 
fulfilled. 

Proof. Suppose that/(.4, 51) < g(A, S) and that for some topology w e <x(A, S) 
mthf(A, S) < w < g(A, S), every isomorphism of (A, S) onto (A, S) is a homeo
morphism of (A, w) onto (A, w). 

Define a mapping H : 0> -* &" as follows: 
(1) If (ili, ££i) is a partially ordered set isomorphic to (A, S), take an arbitrary 

fixed isomorphism <pt of (A, S) onto (At, <Jt) and set H(At, <^t) = (At, wt), 
where wt is a topology on Ax defined in the following way: 

xe A, => DWi(x) ~{OczAt: q>:\0)e Dw(q>;l(x))}. 

(2) If (Au <ii) is a partially ordered set which is not isomorphic to (A, S), 
put H(AU Si)** F(AU Si). 

To prove He a(#, &), it is sufficient to show that the condition (ii) of 2.1 is 
fulfilled. Let <p be an isomorphism of (Alt, ^ i ) onto (A2, S 2). Two possibilities can 



occur: the partially ordered sets (A%9 £1), (A2f Si) a r e isomorphic to (A9 S) or 
none of (Ai9 ^t)9 (A29 S2) is isomorphic to (A9 S)- In the first case we have 
H(Ai9 Si) = (Ai9 w2)9 H(A29 S2) =* (A29 w2\ where wt (/e {1,2}) is a topology 
on A( such that there exists an isomorphism <pt of (A9 S) onto (Ai9 Sd which is 
a homeomorphism of (Af w) onto (Ai9 wt). Then <p2

l o <p o <JDJ is an isomorphism of 
(>4, g ) onto (A9 S) and hence by assumption <p2

x o 9 o q>t is a homeomorphism 
of (.4, u>) onto (^, w). Consequently, <p2 o p^1 o ^ o ^ o (p^1 m <p is a homeo
morphism of (At, wt) onto (.A2, H>2). In the second case, H(Aif St) — F(.4,, g,) 
together with Fe a(0>9 F) implies that q> is a homeomorphism of H(Ai9 Sd onto 
#0*2, £ 2 ) . 

Next we show that F < H < G.lf(Ai9 g 1) is a partially ordered set isomorphic 
to(A9 <L)9thenh(Ai9 ^ t ) is a topology on At such that there exists an isomorphism q>1 

of(A9 S) onto (Ai9 gO which is a homeomorphism of (A9 w) onto (Ai9h(Ai9 ^t)). 
Since F, Gea(&9 !T)9 q>x is also a homeomorphism of (A9f(A9 S)) onto 
(Ai9f(Ai9 ^,)) and of (A9g(A9 S)) onto (Ai9g(Ai9 g 0). The inequalities/^, g ) < 
< H><#(A, £ ) imply that / (^ , g 1 )<A(^ 1 , g 1 )<g (^ i > ^i). When (Ai9 SO 
is a partially ordered set not isomorphic to (A9 S), it is f(Ai9 £t) = /*(̂ i» ^i) g 
£ * ( - 4 i , £ i ) . 

We have a contradiction and hence the proof is complete. 

The proof of the following lemma is analogous to that of 3.3. 

3.4. Lemma. Let F9Ge p(&9 F)9 F <fi G. If (A9 S) is a partially ordered set 
with f(A9 S) < g(A9 S), then for (A9 S), f(A9 S), g(A9 S), the condition (pfi) is 
fulfilled. 

3.5. Lemma. Let F9 G be y-mappings9 y e {a, /?}, F<G and suppose that the follow
ing two conditions are satisfied: 

(1) There exists a partially ordered set (A, S) with f(A9 S) < g(Af S) and for 
(A9 S),f(A9 S), g(A9 S), the condition (py) is fulfilled. 

(2) If a partially ordered set (A i9 gx) is not isomorphic to (A, S),thenf(Ai9 St) •» 

= *(-4i,Si). 
rh^/i F -<y G hows. 
Proof. We prove the part of the statement concerning a-mappings. The proof 

of the second part is analogous. Suppose a-mappings F, G with F < G satisfy con
ditions (1), (2), but that it is not F -<• G. Then there exists an a-mapping H with 
F < H < G. It follows the existence of partially ordered sets (Aif Si), (A%* S2) 
mth f(Ai9 Si) < h(Ai9 Si\ h(A29 S2) < g(A2, S2\ By (2), the partially ordered 
sets (Ax, S1), (Al9 S2) are isomorphic to (Af S)> Let <pt (ie {1,2}) be an arbitrary 
fixed isomorphism of (A9 S) onto (Ai9 Si)- Since F, He<x(0>9 &)f <p% is a homeo
morphism of (Aff(Af S)) onto (Aiff(Aif ^0 ) and also of (Afh(A, §)) onto 
(Aifh(Ai9 Si)i The inequality f(Al9 g x ) < h(Aif ^1) then implies f(A9 S) < 
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f< h(A, 50. The relation h(A, 50 < g(A, 50 can be obtained analogously. Hence 
f(A, 50 < h(A, 50 < g(A, 50 and (1) implies the existence of an isomorphism of 
(A, <0 onto (A, <0 which is not a homeomorphism of (A, h(A, <0) onto (A, h(A, 50). 
Since H is an a-mapping, we have a contradiction. 

The following theorem is a straightforward consequence of Lemmas 3.1—3.5. 

3.6. Theorem. Let F, G be y-mappings, y e {a, /?}, and let F < G. Then F is covered 
by G in y(0, 0") if and only if the following two conditions are satisfied: 

(1) There exists a partially ordered set (A, <0 with f(A, <0 < g(A, 50 and for 
(A, <0, f(A, 50, g(A, 50, the condition (py) is fulfilled. 

(2) If a partially ordered set (Ax, Si) is not isomorphic to (A, 50, then it is 
(Al9Si)^g(At,SiX 

3.7. Corollary. Let Fe y(0, 0"), y e {a, /?}, and let F be not the least element of 
y(09 0'). Then F is an atom ofy(0>, 0r) if and only if the following two conditions are 
satisfied: 

(1) There exists a partially ordered set (A, 50 such that f(A, 50 is not the least 
topology on A and either f(A, 50 is an atom of y(A, <0 or for every topology we 
G y(A, 50 different from the least one, with w < f(A, 50, there exists an isomorphism 
of (A, 50 onto (A, 50 which is not a homeomorphism of (A, w) onto (A, w). 

(2) If a partially ordered set (Al9 S,) is not isomorphic to (A, 50, thenf(Al9 5* j) 
is the least topology on At. 

If we choose one partially ordered set from every maximal class of mutually 
isomorphic partially ordered sets, we obtain a proper class. Hence, by 3.7 and 1.12 
we have: 

3.8. Corollary. The class of all atoms of a(^, 0") and the class of all atoms of 
$(&9 0') are proper classes. 

3.9. Corollary. Let Fe y(0>9 0~)9 y e {a, ft), and let F be not the greatest element 
of y(0>9 0'). Then F is a dual atom of y(0>9 0') if and only if the following two condi
tions are satisfied: 

(1) There exists a partially ordered set (A, 50 such that f(A9 50 is not the greatest 
topology on A9 and either f(A9 50 is a dual atom of y(A9 50 or for every topology 
wey(A9 50 different from the greatest one, with/(-4, <0 < w9 there exists an iso
morphism of 04, <0 onto (A, 50 which is not a homeomorphism of (A9 w) onto (A9 w). 

(2) If a partially ordered set (Ai9 <i t) is not isomorphic to (A9 <0, then f(Al9 5| t) 
is the greatest topology on At. 

Using 1.13, we have: 

3.10. Corollary. The class of all dual atoms of a(^, 0') and the class of all dual 
atoms of fi(0*> 0') are proper classes. 
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Next we shall show that the classes s/m(F)9 s/fi(F)9 s/&F), s/'f(F) can be empty. 
Let N be the set of all positive integers and let A = {*, : i e N} u {yt : i e N}. 

Define an ordering relation on A in such a way that the set {#, : / e N) and {yt: i e N} 
is the set of all minimal and maximal elements of Ay respectively, and for ieNtyeA 
it is xt < y if and only if ye {yif yt+l9 . . . ^ a i - i } - Further consider a topology u 
on A such that Du(a) = { 0 c A : a € 0 , card 0 •« K0} for every a e A. 

3.11. Lemma. Let (_4, g ) fee r/ie partially ordered set and u the topology on A 
defined above. Then u is convexly compatible with the ordering £ on A and there is 
no atom over u and no dual atom under u in both of the lattices a(A, 5.0, P(A, 51). 

Proof. Every topology on A is convexly compatible with the ordering g on A. 
Hence it is sufficient to prove that if vx is a topology on A with vx > u9 then there 
exists a topology wx on A such that vx > wx > u9 and the dual condition. 

If vx > u, then there exists ax e A such that DVi(ax) c Du(ax)9 DVi(ax) 4s Du(ax) 
and for every zeA9 z # ax it is DVi(z) a Du(z). Take an arbitrary fixed set Ue 
6 Du(ax) - Dvi(ax) and define a topology wx on /* as follows: DWi(ax) =- AX^i) -
- {0 c ^ : 0 c U, 0 4. [/}, DWi(z) = />„(*) for every ze A, z * ax. It is clear 
that u g H>! ^ i;,. Since U e DWi(ax) - A . . ^ ) , and for arbitrary feet/, 6 4= ax 

it is U - {b} e D^aJ - DWi(ax)9 we have w < wx < vx. 
Assume v2 < ". Then there exists a2e A such that Du(a2) <= DV2(a2)9 Du(a2) 4= 

4= DV2(a2) and for every z e A9 z 4= a2 it is Du(z) c DV2(z). Take an arbitrary fixed 
set VeDV2(a2) - Du(a2) and define a topology H>2 on .4 in the following way: 
DW2(a2) == DV2(a2) - { 0 cz A : 0 c V}, DW2(z) = ^ ( z ) for every zeA9 z 4= a2. 
Evidently t?2 ^ H>2 <£ w, but since Ve DV2(a2) - DW2(a2) and for arbitrary c e ,4 - K 
it is F u {c} e DW2(a2) - Du(a2)9 we obtain t>2 < w2 < w. 

Define the mappings Fi9 F2 : 9 -• &~ by the following rules: 
(a) If a partially ordered set (Al9 £x) is isomorphic to above-mentioned (A9 <*) 

and (p is the unique isomorphism of (A9 <J) onto (Al9 £t), set F-XA.!, ^ i ) -
= F^/ii , ^ i ) = O ^ , ^ ) , where ux is the topology on At such that DUi(x) ** 
= {O c Ax : <p~l(0) e DJfa'^x))} for every xeAx and w as above. 

(b) If a partially ordered set (Al9 £t) is not isomorphic to (A9 5 )̂, set 
Fx(Al9 £x) = (Alx, w1), .F2(i4i, ^ i ) = ( ^ ^ M 0 ) , where w1 and u° is the greatest 
and the least topology on Al9 respectively. 

Obviously Fi9F2€ <x(0>, &) and the following theorem holds. 

3.12 Theorem. The classes s/JJFx)9 s/fi(Fx\ s/£F2), s/'fi(F2) are empty. 
Proof. We shall show, for example, that s/m(Ft) *- 0. Suppose this is not the 

case. Then there exists G e OL(&9 &) with F{ -<* G. By 3.6 it must be u <g(A9 g ) . 
Using 3.11 we obtain that there exists a topology weoc(A9 £) such that u < w < 
< g(A9 ^ ) . Again 3.6 ensures the existence of an isomorphism of (A, SJ) onto 
(A9 £) which is not a homeomorphism of (A, w) onto (A, w). Since the unique 
isomorphism of (A, £) onto (A, g ) is the identity mapping, we have a contradiction. 
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