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A NOTE ON METRICS AND TOLERANCES 

PREM N. BAJAJ 

(Received May 6,1979) 

1. Introduction. Some results on Metrics and Tolerances have been given by 
Chajda and Zelinka [2]. This note is intended to bring out the significance of con
nectedness of metric space in some of their results. For simplicity we state the results 
for a metric space and leave their extensions to a pseudometric space (Willard [4]) 
or to a quasimetric space (Pervin [3]) to the reader. 

We introduce a new type of connectedness in an integer-valued metric. Results 
on connectedness in an integer-valued metric and its relation with discrete dynamical 
systems will be announced separately. 

2. Definitions ([2]). A reflexive and symmetric binary relation Ton a non-empty 
set A is said to be a tolerance relation (or tolerance for brevity) on A. Moreover the 
ordered pair (A, T) is called a tolerance space. Denoting the identity relation /by T° 
we define Tn+l = T. Tn inductively for any positive integer n. 

A tolerance space (A, T) is said to be T-connected (or simply connected), if given 
x, y in A, there exists a non-negative integer p such that xTpy. 

Let (A, e) be a metric space and s a positive real number. Then Te(e) denotes the 
relation (on A) defined by xTe(e)y if and only if e(x, y) 2§ e. 

Let (A, T) be a connected tolerance space. Let ST deno.te the integer-valued func
tion on Ax A defined by ST(x,y) = least non-negative integer p such that xTpy. 

For the relation Teit) and function dT, we have the following 

3. Proposition. Let (A, e) be a connected metric space and & a positive real number. 
Then (A, Te{E)) is a connected tolerance space. Further if 0 < e ^ 1, then ST(x, y) ^ 
£* e(x, y) for all x, y in A. 

4. Remark. Above proposition does not hold without the hypothesis of connected
ness on the metric space (A, e). To see this, let A =-= {x: 1 <£ | x | % 2} be a subset 

of reals with usual metric. Let e = —. Then the tolerance space (A, Te(t)) 1s, clearly, 

not connected. 



5. Definition. Let (A, d) be an integer-valued metric. Then (A, d) is said to be 
connected if there do not exist non-empty disjoint sets G and H,G e= A, H <z A 
such that G u H * A and min {d(x,y): xe G, y e # } > 1. 

6. Theorem. Let (A., d) be an integer-valued metric. The following are equivalent: 
(i) (A9 d) is connected. 
(ii) For every non-empty proper subset G of A, min {d(x, y): xeG,y$G} = 1. 
(iii) For every proper non-empty subset G of A, d(x,y) = 1 for some xeG and 

some y$G. 
(iv) Given any pair x, y of distinct points in A, there exist points x = xt, x2, x 3 , . . . , 

...,*> = y such that d(xi9xi+i) = 1, / = 1,2, ...,p — 1. 

7. Theorem. Let (A, d) be an integer-valued metric. Let (A, d) be connected (in the 
sense of definition 5). Define a relation T on A by xTy iffd(x,y) = 1. If8T(x,y) is 
defined as above (§2) corresponding to the relation T for all x%y in A, then (A, dT) 
is an integer-valued metric. Moreover 8T(x, y) ^ d(x9 y)for all x, y in A. 



8. Remark. In the above theorem, 5r(x9 y) = d(x9 y) does not, in general, hold. 
To see this let A = {x9 y, z9 w}. Let d(x9 y) = d(x9 z) = d(y9 w) = 2, d(x9 w) = 
= d(w9 z) = d(z9 y) = 1 and d(y9 y) = d(z9 z) = d(w9 w) = d(x9 x) = 0. (See Figure 1.) 

Then (A, d) is a metric space. Moreover (5j(x, >>) = 3 whereas d(x9 y) = 2. 
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