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A LINEAR INEQUALITY OF GRONWALL'S TYPE 
CONTAINING MULTIPLE INTEGRAL 

JAROMfR SlMSA,Brno 
(Received June 6,1980) 

Let C(/, R+) be the class of continuous functions / -+ R+
9 where JR+ = [0, oo) 

and / = [a, b)9 - oo < a < b ^ oo. For ut, ..., um € C(/, R*) let us define 
fi tl f m ~ l 

(1) Klul9...,um](*,P) = ful(t1)ju2(t2)... J um(tm)dtm...dti9 
a a a 

a <* a <; /? < fc. 

If the functions ui9 ..., um are fixed, then K(a, j?) is nonnegative and continuously 
differentiable for every a S <* ^* P <b9 and 

P\if 
(2) g a Oi , ..., Mm](a,j5) =- w ^ a ) ^ ! , ..., um_1](a, jS), 

(3) 4f" [ U l ' •••>M^a '^ = ttiW%2, ...,uw](a,jS). , 

(For m = 1 the right side of (2), (3) equals ui(a), ux(P)9 respectively.) 
In this paper we shall obtain some upper bounds of functions x e C(/, R*) 

satisfying on / the inequality 

(4) x(t) £ f(t) + g(t) K[Pi ,...9pn„i9 pnx\ (a9 r), 

where/, g9pi9 ...9pn are fixed elements of C(/, U+). More general inequality contain
ing multiple integral 

(5) x(t) g f(t) + g(t) J j ... 7lp(t9 ti9..., tn)x(tn)dtn... dtt 
a a a • 

has been investigated by M. Rab in [1]. Applying the general result proved in [1] 
to the special inequality (4), we receive the following 

Lemma 1. Let JC,/, g9pi9 ...9pn e C(J9 R+) and let (4) be valid for t e /. Then 

* dK 
(6) x(t)Sf(t) + g(t)$-gjff.Pl>-,Pn-l>Pnf](.<'>s)X 

* dK ' 
x exp f -gg- [Pi,. . . , Vn-i. Png] (a, r) dr ds, teJ. 
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Iff and g are nondecreasing on / , then (6) implies that 

(1) x(t) S f(t) cxp {g(t) K[Pi,...,/>„] (a, 0}, t e / . 

This result has been proved in [1] by the method of comparison of the integral 
inequality (5) with certain linear scalar differential inequality of the first order. In 
our paper we realize analogous comparison with a system of m linear scalar differential 
inequalities, 1 <I m <J n; we get some upper bounds, similar to (6). It is interesting 
that the functional argument of K in the obtained bounds permits some of cyclical 
permutations. 

Theorem. Let x,/,g fp t, ...,/?„§ C(/, R+) and let (4) be valid on J. Put fn = / , 
gH = g and 

fm(t)~ K{Pm+l, ~,Pn-l,Pj'](<*,t), 
gm(t)~ K[pm+i,...,pn-i9png](a,t), teJ,m~ 1,...,« - 1, 

Then 

(8) X(t)^f(t) + g(0 J -Z^~lPl> .,Pm-l,Pmfm](s,t)X 

xtxpK[qi9...yqm'](s9t)ds, t e / , 

wAere ql9 ...9qmis an arbitrary cyclical permutation of the system pi9 ..., pm _ t , />„,#,„, 
for allm = 1, 2,...,/.?. 

The proof of Theorem is based on the following 

Lemma 2. Let the real function c be continuous on J and let pi9 ...9pmeC(J,R+) 
Denote 

c + = l ( c + |ci). 

If the system of functions ui9 ...,umis the solution of the initial value problem 

"k = />*(') "*+i> k = 1,2, ...9m - 1, 
<~Pm(t)ui + c(t)9 

Ui(a) = ... = um(a) = 0, 
then 

* —dK 
ux(t)^ f — — b i , . . . , P m - i , c + ] ( s , 0 x 

a a 

xexp K[qx, ..., qm] (s91) ds, f e / , 

wAere #i, ..., qm is an arbitrary cyclical permutation of the system pi9 ...,/>„». 
Proof of Lemma 2. Using the method of variation of constants, we receive 

t 

(9) uk(t) = J c(s) vk(t9 s) ds, t € / , fe = 1,..., m, 
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where the functions vk(t) = vk(t9s)9 k = 1, ...,m, satisfy the system of equations 

(10) 0* s A ( ' ) t b + i » fc= 1,2, . . . , m - 1, 

«£ = />«(') *>i, 
and 

(11) »*(*) = 0, A;= l , 2 , . . . , m - 1, 
vm(s) - 1, 

for all fixed s € /. 
It is easily seen that the functions vk(t) are nonnegative on [s, b). Then the equa

tions (9) imply that 
t 

(12) uk(t)£ jc+(s)vk(t9s)ds9 teJ9k = 1,2, ...,m. 

a 

Integrating the equations (10) from s to t9 we receive (with respect to (3) and (11)) 

(13) vk(t) = K[pk9...,pm„t] (s, t) + K[qt, . . . 9 q m „ l 9 qmvk] (s, t)9 t e [s, 6), 
where qi9...9qm is the cyclical permutation of the system pl9 ...>pm such that 
qx =pk;k = 1,2, ...,m. 

Now we apply Lemma 1 to the integral equations (13); since the functions 
K[pk9 ...,Pm~i] (s, 0 are nondecreasing in t on [s, b)9 we can write (see (7)) 

vk(s9t) ^ K[pk9...9pm_i](s9t)expK[qi9..,9qm](s9t)9 te[s9b)9 fe= 1,2, ...,m. 

Consequently, in view of the equations 

vx(s9t) = K[pi9 ...9pk-2>Pk-iVk(s>-)](s,t)9 te[s9b)9k = 2, ...,m 

(see (10) and (11)) 
we have 

(14) vx(s9t) S K[pi9 ...>pk~2,pk-xK[pk9 ...,pm-.%](s,.) x 
x exp K[qt 9...9qm] (s,.)] (s, t)9 t e [s, b) 

for all k = 1, 2, . . . , m. 
Since the function exp K[qt,..., qm] (s, ft) is nondecreasing in tt e [s, 0, the ine
quality (14) can be simplified to the following one 

(15) vt(s9t) = K[pl9 ...,pm-i](s9t)sxpK[qi9 ...9qm](s9t)9 te[s,ft). 

From (12) (with k - 1) and (15) we obtain 

(16) ut(t)£ \c+(s)K[pl9...9pm„i](S9t)x 
a 

xexpK[ql,...,qm](s,t)ds> 
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By (2) the right side of (16) equals 

J — f o - l > - » - 'P»-i' c+](s,0exPK[cJl,...,cjm](s,0ds. 

The proof of Lemma 2 is complete. 
Proof of Theorem. The functions 

"*(0 = K[pk,...,pn_l,pnx'](a, t), teJ,k = \,2,...,n, 

satisfy the following system of equations 

(17) u'k = Pk(t)uk+l, k = 1 , 2 , . . . , » - 1, 

«; = P.(0^(0«i + />n(0lK0, 
where 

(18) h(t) = x(t)-g(t)u1(t), teJ. 

The inequality (4) can be written in the form 

(19) x(t)=f(t) + g(t)Ul(t), teJ. 

From (18) and (19) it follows that 

(20) h(t)<lf(t), teJ. 

Now, let m be a fixed integer, \-$.m<\n. Using (17) and (20) we receive, with 
respect to um+1(a) = ... = un(a) = 0, 

(21) u'm(t) _l pm(t)K{pm+1, ...,p„-1,pngu1'] (a,t) + 
+ Pm(t)K[pm+1, ...,PB-\,Pnf](a,t), teJ. 

Since M. is nondecreasing on J, it holds 

(22) K[pm+!,...,p„_ t , £„£«.] (a, t) _\ 
= u1(t)K[pm+1,...,pn_1,png~\(a,t), teJ. 

The inequalities (21) and (22) imply that 

(23) u'm(t) £ Pm(t)gm(t)Ul(t) + Pm(t)fm(t), teJ. 

(The furictions /_ and gm are defined in Theorem.) 
Let us consider the system of m scalar equations 

"_---_(0-_+-» k=\,2,...,m-\, 
u'm^PmWgmWu,. + c(t), 

where 
c(t)£Pm(t)fm(t), teJ 

(see (17) and (23)). 
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Taking in account that ut(t) = ... = um(t) = 0, we can apply Lemma 2: 

(24) ux(0 S J - g j — [.Pi, ..., />*,-i, P«/J,(s, I) x 

xexp K[qx,..., qm"] (s, r) ds, * e /, 

where ^ , . . . , gmis an arbitrary cyclical permutation of/?!, .,pm-.i>pmgm. 
Using (19) and (24) we obtain the desired inequality (8). 

R E F E R E N C E 

[1] Ráb, M.: Linear integral inequalities, Arch. Math. (Brno), XV (1979), 37—46. 

/. Šimša 
662 95 Brno, Janáčkovo nám. 2a 
Czechoslovakia 

57 


		webmaster@dml.cz
	2012-05-09T17:45:00+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




