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REMARK ON ONE THEOREM OF R. SCHNEIDER 

KAREL SVOBODA, Brno 
(Received May 15,1980) 

The aim of this remark is to generalize one result due to Rolf Schneider [1] 
concerning the global characterization of the sphere among surfaces in 2?3. Thus we 
give in the following an analogy of the meant Schneider's assertion valid for the 
2-dimensional sphere in En. 

We formulate immediately the result: 

Theorem. Let Mbea surface in En
9 n ^ 3, K its Gauss curvature and SeE" a fixed 

point, S $ Tm(M)for an arbitrary me M. Let vT e Tm(M) be the tangent and % 6 N(M) 
the normal component of the vector v defined by S = m -f v. Let 

(i) K > 0 on M; 
(ii) (vtvu vNy <y2v2> vN> - <vtv2, vN}2 ~ <vtvt + v2v2, %> + 1 £ 0 on M, 

vi9v2 c T{M) being tangent orthonormal vector fields on M; 
(iii) vT = 0 on the boundary dM ofM. 
Then M is apart of a 2-dimensional sphere in En with the center S. 

Proof. Let M be covered by open domains Ua in such a way that in each Um 

there is a field of orthonormal frames {m; vt, v2,..., vn} with vt, v2e T(M),i>3,..., 
vtt e N(M)9 where T(M), N{M) are the tangent and the normal bundles of M9 res
pectively. Then we have 

(1) dm « £ cofy, dvt m £ m{vj (i » 1,2,..., ri), 

with 

(2) c»'=:0 (y** 3,...,«), 

co{ + o*j m 0 (ij ** 1,2,..., n) 

and the structure equations 

(3) do)' = f C^A oij, &mj « £ ^ A 4 , <U * !• 2, - . »)-



We easily get from (2) (see for example [2]) 

(4) ctfj = atcol + bid)2, G>2 = biQ)1 + CiCo2 (i = 3,...,«) 

and further, differentiating the equations (4) and applying Cartan's lemma, the 
existence of real-valued functions ai9..., 5f (i = 3 , . . . , n) such that 

(5) 
dat — 2btcol — £ ajcoj = a^ 1 + ^G>2 

J = 3 

dfcf + (a,- - ct) <*>
2 - £ bM = ft***1 + y^y 

J = 3 

« 
dCi 4- 2bt(o\ - J) ĉ o)/ = y^1 + ^a)2 (i = 3, ..., n). 

Now, let 
it 

(6) S = m 4- xvx + yv2 + X PPi 
i = 3 

be the considered point of En. As S is supposed to be fixed, from dS = 0 we obtain 
using (1) and (4), 

n n 

(7) dx - ycol « ( £ a ^ / - 1) o 1 + J b^w 2 , 
J - 3 i - 3 
n n 

d^ + X0>1 = ][] byPyft)1 + ( 5] CyPy - 1) <0%, 
i = 3 i - 3 

ft 

dp* - £ p̂ co/ = ~(afx + bi^co1 - (bpc + c,y).a>2 (i = 3 , . . . , n). 
; « 3 

Further, consider the 1-form 

(8) co = x dy - y dx + (x2 + >>2) a>2 = 
n n if » 

= [x X b,pr -yCZ <*iPi ~ 1)] a*1 + [x( X C,PJ - 1) - y £ bjPj] a>2. 
J=3 i = 3 i = 3 i = 3 

According to (3) and (7), we get from (8) by an easy calculation 

(9) 

where 

From (1), we have 

dco = 2 \ja - i - (x2 + y2) A CO1 A O>2, 

J*, = (I-flifc - 1) ( I ciPi - 1) - ( £ fe)Pi)
2. 

i =3 *«3 i = 3 

i=*3 i = 3 
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n n 

*>2*>i =* £ *w(mod v2), v2v2 » J] C|Vr(mod t?0 
i»3 i«3 

and J& can be written in the form 

(10) Jm = (v^i, %> <t>2t>2, %> - <vtv2, %>2 -

It is not difficult to show that the expression (10) is invariant on M. 
From (8) and the assumption (iii) it follows immediately that co = 0 on dM and 

thus, applying Stokes theorem, we have 

(11) j{2Jm-{x2 + y*)K}a>lA <o2 -0. 
M 

Hence, from (11), according to the suppositions (i) and (ii), x = y = 0, i.e. vT ** 0 
on M. 

This being proved, we have, according to (7) and (2), 

d<i>,t>> = d(£>?) = 0. 

From hence it follows that the length of v is constant and thus M is a part of 
a 2-dimensional sphere with the center S. .% 

Corollary. Let M be a surface in £3, S = rn + v,me M, a fixed point of E* and vT 

the tangent component of v. Let 
(i) K > 0 on M; 

(ii) (pkt — l)(pk2 — 1) S 0 on M, kl9 k2 being the principal curvatures of M, 
p the support function; 

(iii) vT = 0 on the boundary dM. 
Then M is a part of a sphere in E* with the center S. 

Proof. Let n = 3 in the proof of our Theorem. From (10), when omitting the 
index 3, we have immediately 

Jm = (ac - b2)p2 - (a + c)p + 1 - Kp2 - Wp 4- 1, 

where/? is the support function. Thus, kuk2 being the principal curvatures of M, 

/ • 

and the suppositions (i)-(iii) of Corollary yield the assertion. 

Similar result for ovaloids of the class C2 has been proved in R. Schneider's 
paper [1]. 
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