Archivum Mathematicum

Karel Svoboda

Remark on one theorem of R. Schneider

Archivum Mathematicum, Vol. 17 (1981), No. 3, 169--172
Persistent URL: http://dml.cz/dmlcz/107107

Terms of use:

© Masaryk University, 1981
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

REMARK ON ONE THEOREM OF R. SCHNEIDER

KAREL SVOBODA, Brno

(Received May 15, 1980)

The aim of this remark is to generalize one result due to Rolf Schneider [1] concerning the global characterization of the sphere among surfaces in E^{3}. Thus we give in the following an analogy of the meant Schneider's assertion valid for the 2-dimensional sphere in E^{n}.

We formulate immediately the result:
Theorem. Let M be a surface in $E^{n}, n \geqq 3, K$ its Gauss curvature and $S \in E^{n}$ a fixed point, $S \notin T_{m}(M)$ for an arbitrary $m \in M$. Let $v_{T} \in T_{m}(M)$ be the tangent and $v_{N} \in N(M)$ the normal component of the vector v defined by $S=m+v$. Let
(i) $K>0$ on M;
(ii) $\left\langle v_{1} v_{1}, v_{N}\right\rangle\left\langle v_{2} v_{2}, v_{N}\right\rangle-\left\langle v_{1} v_{2}, v_{N}\right\rangle^{2}-\left\langle v_{1} v_{1}+v_{2} v_{2}, v_{N}\right\rangle+1 \leqq 0$ on M, $v_{1}, v_{2} \subset T(M)$ being tangent orthonormal vector fields on M;
(iii) $v_{T}=0$ on the boundary ∂M of M.

Then M is a part of a 2-dimensional sphere in E^{n} with the center S.
Proof. Let M be covered by open domains U_{α} in such a way that in each U_{α} there is a field of orthonormal frames $\left\{m ; v_{1}, v_{2}, \ldots, v_{n}\right\}$ with $v_{1}, v_{2} \in T(M), v_{3}, \ldots$, $v_{n} \in N(M)$, where $T(M), N(M)$ are the tangent and the normal bundles of M, respectively. Then we have

$$
\begin{equation*}
\mathrm{d} m=\sum_{j=1}^{n} \omega^{j} v_{j}, \quad \mathrm{~d} v_{i}=\sum_{j=1}^{n} \omega_{i}^{\prime} v_{j} \quad(i=1,2, \ldots, n) \tag{1}
\end{equation*}
$$

with

$$
\begin{gather*}
\omega^{j}=0 \tag{2}\\
\omega_{i}^{j}+\omega_{j}^{t}=0
\end{gather*} \quad(j=3, \ldots, n), ~(i, j=1,2, \ldots, n) \text { }
$$

and the structure equations

$$
\begin{equation*}
\mathrm{d} \omega^{i}=\sum_{j=1}^{n} \omega^{j} \wedge \omega_{j}^{i}, \quad \mathrm{~d} \omega_{i}^{j}=\sum_{k=1}^{n} \omega_{i}^{k} \wedge \omega_{k}^{j}, \quad(i, j=1,2, \ldots, n) . \tag{3}
\end{equation*}
$$

We easily get from (2) (see for example [2])

$$
\begin{equation*}
\omega_{1}^{i}=a_{i} \omega^{1}+b_{i} \omega^{2}, \quad \omega_{2}^{i}=b_{i} \omega^{1}+c_{i} \omega^{2} \quad(i=3, \ldots, n) \tag{4}
\end{equation*}
$$

and further, differentiating the equations (4) and applying Cartan's lemma, the existence of real-valued functions $\alpha_{i}, \ldots, \delta_{i}(i=3, \ldots, n)$ such that

$$
\begin{gather*}
\mathrm{d} a_{i}-2 b_{i} \omega_{1}^{2}-\sum_{j=3}^{n} a_{j} \omega_{i}^{j}=\alpha_{i} \omega^{1}+\beta_{i} \omega^{2}, \tag{5}\\
\mathrm{~d} b_{i}+\left(a_{i}-c_{i}\right) \omega_{1}^{2}-\sum_{j=3}^{n} b_{j} \omega_{i}^{j}=\beta_{i} \omega^{1}+\gamma_{i} \omega^{2}, \\
\mathrm{~d} c_{i}+2 b_{i} \omega_{1}^{2}-\sum_{j=3}^{n} c_{j} \omega_{i}^{j}=\gamma_{i} \omega^{1}+\delta_{i} \omega^{2} \quad(i=3, \ldots, n) .
\end{gather*}
$$

Now, let

$$
\begin{equation*}
S=m+x v_{1}+y v_{2}+\sum_{i=3}^{n} p_{i} v_{i} \tag{6}
\end{equation*}
$$

be the considered point of E^{n}. As S is supposed to be fixed, from $\mathrm{d} S=0$ we obtain using (1) and (4),

$$
\begin{gather*}
\mathrm{d} x-y \omega_{1}^{2}=\left(\sum_{j=3}^{n} a_{j} p_{j}-1\right) \omega^{1}+\sum_{j=3}^{n} b_{j} p_{j} \omega^{2}, \tag{7}\\
\mathrm{~d} y+x \omega_{1}^{2}=\sum_{j=3}^{n} b_{j} p_{j} \omega^{1}+\left(\sum_{j=3}^{n} c_{j} p_{j}-1\right) \omega^{2} \\
\mathrm{~d} p_{i}-\sum_{j=3}^{n} p_{j} \omega_{i}^{j}=-\left(a_{i} x+b_{i} y\right) \omega^{1}-\left(b_{i} x+c_{i} y\right) \omega^{2} \quad(i=3, \ldots, n) .
\end{gather*}
$$

Further, consider the 1 -form

$$
\begin{gather*}
\omega=x \mathrm{~d} y-y \mathrm{~d} x+\left(x^{2}+y^{2}\right) \omega_{1}^{2}= \tag{8}\\
=\left[x \sum_{i=3}^{n} b_{i} p,-y\left(\sum_{i=3}^{n} a_{i} p_{i}-1\right)\right] \omega^{1}+\left[x\left(\sum_{i=3}^{n} c_{i} p_{i}-1\right)-y \sum_{i=3}^{n} b_{i} p_{i}\right] \omega^{2} .
\end{gather*}
$$

According to (3) and (7), we get from (8) by an easy calculation

$$
\begin{equation*}
\mathrm{d} \omega=2\left\{J_{\omega}-\frac{1}{2}\left(x^{2}+y^{2}\right) K\right\} \omega^{1} \wedge \omega^{2} \tag{9}
\end{equation*}
$$

where

$$
J_{\omega}=\left(\sum_{i=3}^{n} a_{i} p_{i}-1\right)\left(\sum_{i=3}^{n} c_{i} p_{i}-1\right)-\left(\sum_{i=3}^{n} b_{i} p_{i}\right)^{2}
$$

From (1), we have

$$
v_{1} v_{1}=\sum_{i=3}^{n} a_{i} v_{i}\left(\bmod v_{2}\right), \quad v_{1} v_{2}=\sum_{i=3}^{n} b_{i} v_{i}\left(\bmod v_{1}\right)
$$

$$
v_{2} v_{1}=\sum_{i=3}^{n} b_{i} v_{i}\left(\bmod v_{2}\right), \quad v_{2} v_{2}=\sum_{i=3}^{n} c_{i} v_{l}\left(\bmod v_{1}\right)
$$

and J_{ω} can be written in the form

$$
\begin{gather*}
J_{\omega}=\left\langle v_{1} v_{1}, v_{N}\right\rangle\left\langle v_{2} v_{2}, v_{N}\right\rangle-\left\langle v_{1} v_{2}, v_{N}\right\rangle^{2}- \tag{10}\\
-\left\langle v_{1} v_{1}+v_{2} v_{2}, v_{N}\right\rangle+1
\end{gather*}
$$

It is not difficult to show that the expression (10) is invariant on M.
From (8) and the assumption (iii) it follows immediately that $\omega=0$ on ∂M and thus, applying Stokes theorem, we have

$$
\begin{equation*}
\int_{M}\left\{2 J_{\omega}-\left(x^{2}+y^{2}\right) K\right\} \omega^{1} \wedge \omega^{2}=0 \tag{11}
\end{equation*}
$$

Hence, from (11), according to the suppositions (i) and (ii), $x=y=0$, i.e. $v_{T}=0$ on M.

This being proved, we have, according to (7) and (2),

$$
\mathrm{d}\langle v, v\rangle=\mathrm{d}\left(\sum_{i=3}^{n} p_{i}^{2}\right)=0
$$

From hence it follows that the length of v is constant and thus M is a part of a 2-dimensional sphere with the center S.

Corollary. Let M be a surface in $E^{3}, S=m+v, m \in M$, a fixed point of E^{3} and v_{T} the tangent component of v. Let
(i) $K>0$ on M;
(ii) $\left(p k_{1}-1\right)\left(p k_{2}-1\right) \leqq 0$ on M, k_{1}, k_{2} being the principal curvatures of M, p the support function;
(iii) $v_{T}=0$ on the boundary ∂M.

Then M is a part of a sphere in E^{3} with the center S.
Proof. Let $n=3$ in the proof of our Theorem. From (10), when omitting the index 3, we have immediately

$$
J_{\omega}=\left(a c-b^{2}\right) p^{2}-(a+c) p+1=K p^{2}-2 H p+1
$$

where p is the support function. Thus, k_{1}, k_{2} being the principal curvatures of M,

$$
J_{\omega}=\left(k_{1} p-1\right)\left(k_{2} p-1\right)
$$

and the suppositions (i)-(iii) of Corollary yield the assertion.
Similar result for ovaloids of the class C^{2} has been proved in R. Schneider's paper [1].

REFERENCES

[1] R. Schneider: Eine Kennzeichnung der Kugel, Archiv der Math., 16 (1965), 235-240.
[2] K. Svoboda: On the 2-dimensional sphere in E^{n}, Knižnice VUT, A-18 (1978), 283-297
K. Svoboda 60200 Brno, Gorkého 13
Czechoslovakia

