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ASSOCIATION SCHEMES H* 

LtTBOS BAUER, Brno 
(Received September 9, 1981) 

3. Association schemes with three classes 

3.1. Theorem. Let R = {R09 Rl9 R2, R3} and (X, R) satisfy Al, A2, A3. Then 
(X, R) satisfies A4. 

Proof. In the symmetric case (Rt = Uf1, R2 = JIJ1, R3 = R3*) there holds 
the assertion (1.10.). 

Let e.g. R^1 = R2. According to 1.6. we have 

(32) p°i2 = t;x =v2 = P2i, 

according to 1.5. 

(33) poi = Pio = Poi = Pio = Poi = Pio = 0, 

(34) p 0 1 = P i o = l , 

(35) P02 = P20 = P02 = P20 — P02 = P20 = 0, 

(36) P02 = P20 = !> 

(37) P03 = P30 = P03 = P30 = P03 = P30 = 0, 

(38) p 0 3 = p 3 0 = 1, 

according to 1.16. 

(39) *>LPi2 = t>tPh - » i P 2 i . 
HO) t>3Pl3 = tflP33==*>3PM> 

.- " ' . ; , : f 

(41) f2P?3 = flP23 = »3P?i. 

(42) O3PI2 " Viplt, 

(43) f3P21 = »lJ?13; 

(44) »2i>?2 = l>lP£l, 

* For Chapter 1, 2 see Association schemes I. Arch. Math. 4, 1981, 173—183 
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according to 1.13. (/ = l,f = 2) 

(45) vt + t?ip}2 + v2p\2 + v3p
3

2 = vxv2, 

and according to VI5. (/ = 1, k = 1) 

(46) p}0 + p\x + /?}/+ p}3 = vt. 

Using relations (42), (44) we get from (45) 

vt + » lPi 2 + ViPlt + VlPll = »l, 

hence using (39) and dividing above expression by vx, we get 

(47) 1 + 2j>}2 + p * i = f i . 

Using (34), (39), we get from (46) 

(48) 1 + 2p\2 + p\3 = vl. 

Comparing (47) and (48), we obtain 

(49) » l — л 1 

Piз = Pзi-
From the relations (42), (43), (49) it follows 

(50) «3 — «3 

Pl2 = P21-
Transforming relations (39), (40), we obtain 

(51) T*1 — я * 

P l 2 = P21, 

(52) „ 3 „ 3 

Piз = Pзi-

By 1.9. we have 

(53) ï . 1 — « 2 

Pl2 - Pl2> 

(54) « - • — « 2 

PlЗ = P32» 

(55) P32 = PІЗ> 

(56) r,1 — „ 2 

P21 = P21, 

(57) wЛ — „ 2 

P з i = P23, 

(58) P23 = Pзi> 

(59) n 3 — я 3 

P23 = Pзi» 

(60) 3 3 
P32 =* P lЗ-

From the гelations (51), (53), (56) it follows 

(61) «2 — «2 

P l 2 = P21, 

fгom (32), (41), (55) 

(62) f 1 — ^ 1 

P23 — P32> 

fгom (55), (58), (62) 

(63) n 2 — « 2 

Piз = Pзi , 
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(72) P12-— Z-z-Pm 

from (49), (54), (57) 

(64) p L = P32, 

from (52), (59), (60) 

(65) P23 = P32-

The relations (32), (33), (34), (35), (36), (37), (38), (49), (50), (51), (52), (61), (62), 
(63), (64), (65) give the assertion. 

3.2. Theorem. Let R = {RQy Riy R2, i?3}, R^1 = R29 and (X, M) be an associa
tion scheme. Then 

(66) Pu = P12 = P22 = Pi2> 

(67) p l 3 = P 2 3 = ^ - 1 - 2p[ t , 

(68) pli^plu 

(69) P23 = Pi3 = *>1 - Pll ~ P22» 

(70) P33 = 1 + 3Pii + Pii - 2vt + i>3, 

/T1\ «3 ~ 3 -.. Vl Vi *sl Vl *>i (71) P11 = P22 = — ~Pa ~ —P11* 
V$ U 3 173 

i 
v3 v3 v3 

2 
nt\ n3 - n3 — Vi M 1 Vl «i J- Vi « X "> Vl _L ., 
(73) P13 = P23 = —" + 3 — Pn + —-P22 - 2 — - + fli

t/3 1/3 u 3 U3 

(74) PU - ,3 - 1 - 2il- - 6-p-rf. - 2-£-p{2 + 4 - 4 - 2„.. 
"3 v3 v3 v3 

Proof. Theorem 1.9. implies 

(75) p i i = P 2 2 , 

(76) P33 = P33» 

(77) Pn -Pn, 

P11 = Pu> i e . (68). 

From (39), (53), (75) there follows (66). 
According to 1.13. (1 = 3 , j = 3) 

(78) t?3 + Vtp\3 + *>2P33 + V3pj3 - "I, 

and by 1.15. for / =* 2, A: = 1 

(79) p\t + p\2 + P23 = v2 

and for / = 3, & = 1 

(80) P 3 i + p l 2 + P 3 3 = t;3. 
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From (32), (39), (79) it follows 

(81) P l l+P22+Pi3 = ^ , 

from (39), (48) 

(82) l + 2p\i+pU = vl9 

from (80) and A4 

(83) Pl3 + Pl3+P33 = *>3> 
from (32), (76), (78) 

(84) V3+2vtpl3 +»3P33as»L 

from (82) 

(85) pU = v1-l-2pll9 

from (81) 

(86) P23 = t>l - P 1 1 - P 2 2 -

(54), (85) and A4 imply (67), 
(58), (86) and A4 imply (69). 

Substituting p\3 and p\3 from (67), (69) to (83) we get (70) and substituting p\y 

from (70) to (84) we get (74). 
By 1.16. we have 

(87) Wii=vxpU. 
The relations (86) and (87) imply 

2 
/QQ\ «3 — Vi Vi ^ Vi «1 

(85) P l t = - ~ P l l ~ — P22-
v3 ^3 v3 

(77) and (88) imply (71), 
(42), (85) and A4 imply (72). 

From (40), (70) we get 

(89) P13 = — - + 3 - — p l t + — P22 ~ 2 — + ^ * 
v3 v3 v3 v3 

(60), (89) and A4 imply (73) 

Remark. If for an association scheme with 3 classes, where JR"1 -= R2 the 
numbers vi9 v3,p\lip\2 are known, then the others pk

u are explicitly determin
ed by 3.2. (The numbers pu which do not occur in 3.2. are determined by the 
axiom A4 and the theorems 1.5., 1.7.). 

4. General case 

4.1. Theorem. Let \X\ S 5, and (X, R) satisfy Al, A2, A3. Then (X, R) 
satisfies A4. 
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Proof. According to 1.11. we have £t>{ = | X\. Since valencies are natural 
j » 0 

numbers, it holds n < | X |. 
For n as 1 we have JR̂ "1 » Rt and according to 1.10. the assertion is valid. 
For n = 2 the assertion is implied by 2.1., for n == 3 by 3.1. 
For n = 4 it must be | X | § 5, for | X | == 5 we have v0 ~ vt ** v2 ** v3 ~ 

•-=- t>4 == 1 (1.11.). According to f 1.18. J? contains no symmetric relation (except
ing R0). Without loss of generality we can put 

(+) Ki — Rг> R;L = я4-

We shall now construct a scheme with above mentioned properties satisfying 
Al, A2, A3 by successively completing the matrix 

0 

2 

1 

4 

3 

1 

0 

2 

0 

3 

0 

4 

0 

In the second row the number one can be placed either in the 3rd, 4th or 5th 
column but the last two cases are equivalent. By this there is explicitly determined 
completing the second row and the second column (the regularity of the rela
tions Rl9 R2, JR3, R4 and equalities ( + ) must be obseryed). Thus we have two 
possibilities: 

0 
2 

1 

0 

2 

1 

3 

4 

4 

3 

1 2 0 

4 

3 

3 

4 

0 

0 

0 

2 

1 

0 

2 

4 

3 

1 

4 

3 

1 3 0 

4 

3 

2 

4 

0 

0 

The first matrix cannot be completed without loss of regularity of some relation 
(in the third row of 4th column there cannot be placed any number without loss 
of regularity of the corresponding relation). In the second matrix, the number 4 
can be placed only by one way (in the 4th column), and thus the whole matrix is 
determined: 

0 1 2 3 4 

2 0 4 1 3 

1 3 0 4 2 

4 2 3 0 1 

3 4 1 2 0 

115 



Calculating all ptj (see chapter 5) we get 

Pn = P_i = 0 

P n = P21 = 0 

P u = P21 = 0 

P U = P 1 I = 0 

Pn = P.i - 0 
PÎз = Pзi - 0 

P?з = PЗL = 0 

PÍз = Pзi = 1 

PU = PÌi = 0 

PÎ4 = PІi = 1 

PÏ4 = PІi = 0 

Pu = PІi = 0 

PІ4=1 P44 = 0 

„1 
P23 
„2 
P23 

-
3 

P23 

P23 

P_4 

P_4 

P_4 

P24 

P.4 

P34 

PІ4 

PзV 

P32=1 

PІ2=0 

P32=0 

PÍ2 = 0 

PІ2 = 0 

P42=0 

P42=l 

PÍ2 = 0 

PІз = 0 
P 4 3 = 0 

P 4 3 = 0 

p« = o 
P44 = 0 

Píl = 0 
P u = 0 

PÌl = 1 
P Í l = 0 
PІ2 = 0 

P22 = 0 
p3

22 = 0 

P.2 = l 

Pзз = 0 

PІз = l 
Pзз = 0 

PÍз = 0 

PÍ4 = 0 

The other necessary equalities are given by 1.5. and 1.7. Consequently A4 is 
satisfied. The foregoing construction implies that other schemes satisfying 
Al, A2, A3 for | X| = 5, n = 4 are different only in numbering relations. 

4.2. Theorem. Let (X, R) satisfy Al, A2, A3, Ri9 Rj9 Rk e R9 Rt # RJ1, Rj = 
= RJ1, Rk = RJ1, vt = Vj = vk = 1, pkij = 1. Then pk

jt = 0 (i.e. (X, R) does not 
satisfy A4). 

Proof. Let (x, y) e Rk hold. Then there exists one and only one z e X such that 
(JC, z)e Rl9 (z, y)£ Rj. Since Rj = UJ"1 and _Rk = RJ1, it holds (>>, x) e Rk9 (y9 z) e 
e Rj and at the same time for z' ^ z it holds (y9 z') $ Rj9 because Vj = 1. Further 
(z, x) # jR| is valid, because RJ1 # Rt and (z, x) e RJ1. Thus p;i(y, JC) = 0 and 
hence according to A3 we have p)t = 0 ^ pkj. 

Remark. The situation described in Theorem 4.2. is expressed by the graph 
on Fig. 2. Completing this graph so that it may satisfy Al, A2, A3 we get the graph 
on Fig. 3. Thus for | X | = 6 it is now possible to construct such a system of rela
tions which satisfies Al, A2, A3 and does not satisfy A4. The matrix record is 

0 
1 
3 
2 
4 
5 

1 
0 
4 
5 
3 
2 

2 
4 
0 
3 
5 
1 

3 
5 
2 
0 
1 
4 

4 
2 
5 
1 
0 
3 

5 
3 
1 
4 
2 
0 
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For the values of i,j, k stated in Tab. 1 it holds, 1 = pkj # p)t = 0. 

Í 1 2 3 1 1 4 2 4 4 3 5 1 5 2 3 5 4 5 

j 2 1 1 3 4 1 4 2 3 4 1 5 2 5 5 3 5 4 

k 4 5 4 5 2 3 1 5 1 5 2 3 1 4 1 4 2 3 

Tab. 1 

. -f 

7 \ ^xѓ / 
/*\Ъ -kf\ 

\3? 
x

 Ą 

\ 

\ \ ; f 

зЧ 
2 \ 

\ / \ 5 У / 

/з 

Fig.2 

1 
Fig.З 

Remark. As far as (X,R) satisfies Al, A2 and all the relations from J? are regular, 
it may occur even the situation when there is not satisfied the axiom A3. Tn this 
situation there may occur the case where for some /,/, k do not exist simultaneously 
the numbers pkj,p)i (example in Remark to 1.4.) but also the case where one of 
the numberspkj,p)i exists and the other does not. For example the system described 
by the matrix 

0 

1 

3 

2 

4 

5 

1 

0 

2 

5 

3 

4 

2 

3 

0 

4 

5 

1 

3 

5 

4 

0 

1 

2 

4 

2 

5 

1 

0 

3 

5 

4 

1 

3 

2 

0 

satisfies A1, A2, all the relations are regular, but e.g. the number p\% does not exist 
and simultaneously/*21 = 0 . 
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5. Association schemes for | X | ^ 6 

In the present chapter, there is given a survey of all association schemes for 
| X | ^ 6 excepting those arised from aftermentioned schemes, by renumbering 
relations or renaming elements of carrier. 

The used construction of association schemes is described in the proof of 
Theorem 4.1. For computing the values p\j (proof of their existence and verifying 
the axiom A4) there was used the computer EC 1033. The program is based on the 
relation (2.5.) from [4]. 

The results obtained by means of computer show that the example quoted in 
Remark to 4.2. is for | X | = 6 the only case when (X, R) satisfies Al, A2, A3 and 
does not satisfy A4. For schemes with four classes it is valid for | X \ ^ 6: 

If (X, R) satisfies Al, A2, A3, then it satisfies A4, too. 

This 
1*1 Š-
scheme 
P/0'POI 

\x\ -
0 

.2 

1 

1 
0 

2 

2 

1 

0 

X\ = 4 

0 

1 

2 

1 

1 

0 

1 

2 

2 

1 

0 

1 

1 

2 

1 

0 

0 
1 
2 
3 

1 
0 
3 
2 

2 
3 
0 
1 

3 
2 
1 
0 

0 
3 

1 

0 

2 
1 

3 
2 

2 3 0 1 
1 2 3 0 

A survey of association schemes 

survey does not contain association schemes with one class (for every 
2 there exists an association scheme with one class). With each association 
there are quoted nonzero numbers p*j [excepting the numbers of the type 
(see 1.5.)]. 

3 

(nonsym.) 

vt = v2 = 1 

-P22 = JP11 = 1 

(sym.) 

vt = 2 v2 == 1 

P12 = P2i = 1 Pit = 2 

(sym.) 

vt = v2 = t?3 = 1 
-1 — -1 — «2 __• 2 __ _3 __ _3 _ 1 
P23 = PZ2 = Pl3 = P3i = Pl2 = P21 = 1 

(nonsym.) 

t̂ j = v2 = t?3 == 1 

«1 — « l _. «2 _2 — _3 _3 — 1 
P23 = P32 = P i t = P33 = P l2 = .P21 = l 
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0 1 1 2 2 

1 0 2. 1 2 

1 

T 
2 

1 

0 

2 

2 

т 
1 

1 

2 2 1 1 0 

(sym.) 

vt = v2 = 2 

T ì 1 — - n 1 

Pl2 = P21 
л

1
 — «

2 

P22 = Pll 
я
2 
Pl2 P2

2
l = 1 

0 

2 

1 

4 

3 

1 

0 

3 

2 

4 

2 

4 

T 
3 

1 

3 

1 

4 

T 
2 

4 

3 

2 

1 

0 

(nonsym.) 

*>i =
 V2 = *>3 = ^4 = 1 

,-Л — ^
1
 э,

1 

P23 = P32 = P44 A 
„2 _ 2 _ 
P41 = PзЗ = 

3 3 3 4 4 4 1 
= Pll = P24 = P42 = PlЗ = Pзi = P22 = I 

X\ = 6 

0 

l 

l 

l 

l 

2 

l 

0 

2 

l 

l 

l 

l 

2 

0 

l 

l 

l 

l 

l 

l 

T 
2 

1 

1 

1 

T 
T 
0 

1 

2 

1 

1 

1 

1 

0 

(sym.) 

Vi = 4 v2 = l 

P12 = P21 = 1 

P t i = 2 PÍi = 4 

0 

1 

1 

1 

2 

2 

1 

0 

2 

2 

1 

1 

1 

2 

T 
2 

1 

1 

1 

2 

2 

0 

1 

1 

2 

1 

1 

1 

0 

2 

2 

1 

T 
1 

T 
0 

(sym.) 

v! = 3 v2 = 2 

P22 = 1 P12 = P21 = 2 

P Î i = 3 

0 

1 

1 

1 

з 
2 

1 

0 

з 
2 

1 

1 

1 

2 

0 

з 
T 
T 

1 

з 
2 

0 

1 

1 

2 

1 

1 

1 

0 

з 

з 
1 

1 

1 

2 

0 

(nonsym.) 

vx = 3 v2 = v3 = 1 
„J — j , 1 _ „ i _ - 1 _ «2 3 f 
P12 - P21 - P13 = P31 = P33 = P22 = 1 
»2 „ 3 1 

P11 = P n = 3 
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0 

1 

1 

2 

2 

3 

1 

0 

1 

3 

2 

2 

1 

т 
0 

2 

3 

2 

2 

3 

2 

0 

1 

1 

2 

2 

3 

1 

T 
ì 

3 

T 
2 

1 

1 

0 

(sym.) 

t>! = t;2 = 2 
Л 

*з = 1 

PÌí = 1>22 = PÌЪ = P32 = P?2 = PÌl = P?3 - PÌl = 1 

P?2 = PІl « 2 
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