Archivum Mathematicum

Luboš Bauer

Association schemes. II

Archivum Mathematicum, Vol. 18 (1982), No. 3, 111--120
Persistent URL: http://dml.cz/dmlcz/107132

Terms of use:

© Masaryk University, 1982
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ASSOCIATION SCHEMES II*

LUBOŠ BAUER, Brno

(Received September 9, 1981)

3. Association schemes with three classes

3.1. Theorem. Let $\boldsymbol{R}=\left\{R_{0}, R_{1}, R_{2}, R_{3}\right\}$ and (X, R) satisfy $\mathbf{A} 1, \mathbf{A} 2, \mathrm{~A} 3$. Then (X, R) satisfies A4.

Proof. In the symmetric case ($R_{1}=R_{1}^{-1}, R_{2}=R_{2}^{-1}, R_{3}=R_{3}^{-1}$) there holds the assertion (1.10.).

Let e.g. $R_{1}^{-1}=R_{2}$. According to 1.6. we have

$$
\begin{equation*}
p_{12}^{0}=v_{1}=v_{2}=p_{21}^{0} \tag{32}
\end{equation*}
$$

according to 1.5 .

$$
\begin{gather*}
p_{01}^{0}=p_{10}^{0}=p_{01}^{2}=p_{10}^{2}=p_{01}^{3}=p_{10}^{3}=0 \tag{33}\\
p_{01}^{1}=p_{10}^{1}=1 \tag{34}\\
p_{02}^{0}=p_{20}^{0}=p_{02}^{1}=p_{20}^{1}=p_{02}^{3}=p_{20}^{3}=0 \tag{35}\\
p_{02}^{2}=p_{20}^{2}=1 \tag{36}\\
p_{03}^{0}=p_{30}^{0}=p_{03}^{1}=p_{30}^{1}=p_{03}^{2}=p_{30}^{2}=0 \tag{37}\\
p_{03}^{3}=p_{30}^{3}=1 \tag{38}
\end{gather*}
$$

according to 1.16 .

$$
\begin{gather*}
v_{1} p_{12}^{1}=v_{1} p_{11}^{1}=v_{1} p_{21}^{1} \tag{39}\\
v_{3} p_{13}^{3}=v_{1} p_{33}^{1}=v_{3} p_{31}^{3} \tag{40}\\
v_{2} p_{13}^{2}=v_{1} p_{23}^{1}=v_{3} p_{11}^{3} \tag{41}\\
v_{3} p_{12}^{3}=v_{1} p_{31}^{1} \tag{42}\\
v_{3} p_{21}^{3}=v_{1} p_{13}^{1} \tag{43}\\
v_{2} p_{12}^{2}=v_{1} p_{21}^{1} \tag{44}
\end{gather*}
$$

[^0]according to 1.13. $(i=1, j=2)$
\[

$$
\begin{equation*}
v_{1}+v_{1} p_{12}^{1}+v_{2} p_{12}^{2}+v_{3} p_{12}^{3}=v_{1} v_{2} \tag{45}
\end{equation*}
$$

\]

and according to 1.15. $(i=1, k=1)$

$$
\begin{equation*}
p_{10}^{1}+p_{11}^{1}+p_{12}^{1}+p_{13}^{1}=v_{1} . \tag{46}
\end{equation*}
$$

Using relations (42), (44) we get from (45)

$$
v_{1}+v_{1} p_{12}^{1}+v_{1} p_{21}^{1}+v_{1} p_{31}^{1}=v_{1}
$$

hence using (39) and dividing above expression by v_{1}, we get

$$
\begin{equation*}
1+2 p_{12}^{1}+p_{31}^{1}=v_{1} \tag{47}
\end{equation*}
$$

Using (34), (39), we get from (46)

$$
\begin{equation*}
1+2 p_{12}^{1}+p_{13}^{1}=v_{1} \tag{48}
\end{equation*}
$$

Comparing (47) and (48), we obtain

$$
\begin{equation*}
p_{13}^{1}=p_{31}^{1} . \tag{49}
\end{equation*}
$$

From the relations (42), (43), (49) it follows

$$
\begin{equation*}
p_{12}^{3}=p_{21}^{3} . \tag{50}
\end{equation*}
$$

Transforming relations (39), (40), we obtain

$$
\begin{align*}
& p_{12}^{1}=p_{21}^{1} \tag{51}\\
& p_{13}^{3}=p_{31}^{3} \tag{52}
\end{align*}
$$

By 1.9. we have

$$
\begin{align*}
& p_{12}^{1}=p_{12}^{2}, \tag{53}\\
& p_{13}^{1}=p_{32}^{2}, \tag{54}\\
& p_{32}^{1}=p_{13}^{2}, \tag{55}\\
& p_{21}^{1}=p_{21}^{2}, \tag{56}\\
& p_{31}^{1}=p_{23}^{2}, \tag{57}\\
& p_{23}^{1}=p_{31}^{2}, \tag{58}\\
& p_{23}^{3}=p_{31}^{3}, \tag{59}\\
& p_{32}^{3}=p_{13}^{3} . \tag{60}
\end{align*}
$$

From the relations (51), (53), (56) it follows

$$
\begin{equation*}
p_{12}^{2}=p_{21}^{2}, \tag{61}
\end{equation*}
$$

from (32), (41), (55)

$$
\begin{equation*}
p_{23}^{1}=p_{32}^{1} \tag{62}
\end{equation*}
$$

from (55), (58), (62)

$$
\begin{equation*}
p_{13}^{2}=p_{31}^{2} \tag{63}
\end{equation*}
$$

from (49), (54), (57)

$$
\begin{equation*}
p_{23}^{2}=p_{32}^{2} \tag{64}
\end{equation*}
$$

from (52), (59), (60)

$$
\begin{equation*}
p_{23}^{3}=p_{32}^{3} \tag{65}
\end{equation*}
$$

The relations (32), (33), (34), (35), (36), (37), (38), (49), (50), (51), (52), (61), (62), (63), (64), (65) give the assertion.
3.2. Theorem. Let $R=\left\{R_{0}, R_{1}, R_{2}, R_{3}\right\}, R_{1}^{-1}=R_{2}$, and (X, R) be an association scheme. Then

$$
\begin{equation*}
p_{33}^{1}=1+3 p_{11}^{1}+p_{22}^{1}-2 v_{1}+v_{3} \tag{69}
\end{equation*}
$$

$$
\begin{equation*}
p_{11}^{3}=p_{22}^{3}=\frac{v_{1}^{2}}{v_{3}}-\frac{v_{1}}{v_{3}} p_{11}^{1}-\frac{v_{1}}{v_{3}} p_{22}^{1} \tag{70}
\end{equation*}
$$

$$
\begin{equation*}
p_{12}^{3}=\frac{v_{1}^{2}}{v_{3}}-\frac{v_{1}}{v_{3}}-2 \frac{v_{1}}{v_{3}} p_{11}^{1} \tag{71}
\end{equation*}
$$

$$
\begin{gather*}
p_{13}^{3}=p_{23}^{3}=\frac{v_{1}}{v_{3}}+3 \frac{v_{1}}{v_{3}} p_{11}^{1}+\frac{v_{1}}{v_{3}} p_{22}^{1}-2 \frac{v_{1}^{2}}{v_{3}}+v_{1}, \tag{73}\\
p_{33}^{3}=v_{3}-1-2 \frac{v_{1}}{v_{3}}-6 \frac{v_{1}}{v_{3}} p_{11}^{1}-2 \frac{v_{1}}{v_{3}} p_{22}^{1}+4 \frac{v_{1}^{2}}{v_{3}}-2 v_{1} .
\end{gather*}
$$

Proof. Theorem 1.9. implies

$$
\begin{align*}
& p_{11}^{1}=p_{22}^{2} \tag{75}\\
& p_{33}^{1}=p_{33}^{2} \tag{76}\\
& p_{11}^{3}=p_{22}^{3} \tag{77}\\
& p_{22}^{1}=p_{11}^{2}, \quad \text { i.e. (68). }
\end{align*}
$$

From (39), (53), (75) there follows (66).
According to 1.13. $(i=3, j=3)$

$$
\begin{equation*}
v_{3}+v_{1} p_{33}^{1}+v_{2} p_{33}^{2}+v_{3} p_{33}^{3}=v_{3}^{2} \tag{78}
\end{equation*}
$$

and by 1.15 . for $i=2, k=1$

$$
\begin{equation*}
p_{21}^{1}+p_{22}^{1}+p_{23}^{1}=v_{2} \tag{79}
\end{equation*}
$$

and for $i=3, k=1$
(80)

$$
p_{31}^{1}+p_{32}^{1}+p_{33}^{1}=v_{3}
$$

From (32), (39), (79) it follows

$$
\begin{equation*}
p_{11}^{1}+p_{22}^{1}+p_{23}^{1}=v_{1} \tag{81}
\end{equation*}
$$

from (39), (48)

$$
\begin{equation*}
1+2 p_{11}^{1}+p_{13}^{1}=v_{1} \tag{82}
\end{equation*}
$$

from (80) and A4

$$
\begin{equation*}
p_{13}^{1}+p_{23}^{1}+p_{33}^{1}=v_{3} \tag{83}
\end{equation*}
$$

from (32), (76), (78)

$$
\begin{equation*}
v_{3}+2 v_{1} p_{33}^{1}+v_{3} p_{33}^{3}=v_{3}^{2}, \tag{84}
\end{equation*}
$$

from (82)

$$
\begin{equation*}
p_{13}^{1}=v_{1}-1-2 p_{11}^{1} \tag{85}
\end{equation*}
$$

from (81)

$$
\begin{equation*}
p_{23}^{1}=v_{1}-p_{11}^{1}-p_{22}^{1} . \tag{86}
\end{equation*}
$$

(54), (85) and A4 imply (67),
(58), (86) and A4 imply (69).

Substituting p_{13}^{1} and p_{23}^{1} from (67), (69) to (83) we get (70) and substituting p_{33}^{1} from (70) to (84) we get (74).

By 1.16. we have

$$
\begin{equation*}
v_{3} p_{11}^{3}=v_{1} p_{23}^{1} . \tag{87}
\end{equation*}
$$

The relations (86) and (87) imply

$$
\begin{equation*}
p_{11}^{3}=\frac{v_{1}^{2}}{v_{3}}-\frac{v_{1}}{v_{3}} p_{11}^{1}-\frac{v_{1}}{v_{3}} p_{22}^{1} \tag{88}
\end{equation*}
$$

(77) and (88) imply (71),
(42), (85) and A4 imply (72).

From (40), (70) we get

$$
\begin{equation*}
p_{13}^{3}=\frac{v_{1}}{v_{3}}+3 \frac{v_{1}}{v_{3}} p_{11}^{1}+\frac{v_{1}}{v_{3}} p_{22}^{1}-2 \frac{v_{1}}{v_{3}}+v_{1} \tag{89}
\end{equation*}
$$

(60), (89) and A4 imply (73)

Remark. If for an association scheme with 3 classes, where $R^{-1}=R_{2}$ the numbers $v_{1}, v_{3}, p_{11}^{1}, p_{12}^{1}$ are known, then the others $p_{i j}^{k}$ are explicitly determined by 3.2. (The numbers $p_{i j}^{k}$ which do not occur in 3.2. are determined by the axiom A 4 and the theorems 1.5., 1.7.).

4. General case

4.1. Theorem. Let $|X| \leqq 5$, and (X, \boldsymbol{R}) satisfy A1, A2, A3. Then (X, \boldsymbol{R}) satisfies A4.

Proof. According to 1.11. we have $\sum_{i=0}^{n} v_{i}=|X|$. Since valencies are natural numbers, it holds $n<|X|$.
For $n=1$ we have $R_{1}^{-1}=R_{1}$ and according to 1.10 . the assertion is valid.
For $n=2$ the assertion is implied by 2.1., for $n=3$ by 3.1.
For $n=4$ it must be $|X| \geqq 5$, for $|X|=5$ we have $v_{0}=v_{1}=v_{2}=v_{3}=$ $=v_{4}=1$ (1.11.). According to $1.18 . R$ contains no symmetric relation (excepting R_{0}). Without loss of generality we can put

$$
\begin{equation*}
R_{1}^{-1}=R_{2}, \quad R_{3}^{-1}=R_{4} . \tag{+}
\end{equation*}
$$

We shall now construct a scheme with above mentioned properties satisfying A1, A2, A3 by successively completing the matrix

0	1	2	3	4
$\frac{2}{1}$	0			-
$\frac{1}{4}$	-			-
3			-	0

In the second row the number one can be placed either in the 3rd, 4th or 5th column but the last two cases are equivalent. By this there is explicitly determined completing the second row and the second column (the regularity of the relations $R_{1}, R_{2}, R_{3}, R_{4}$ and equalities (+) must be observed). Thus we have two possibilities:

$\frac{0}{2}$	$\frac{1}{2}$	2	3	4
1	$\frac{0}{2}$	1	4	3
$\frac{4}{4}$	$\frac{3}{3}$			0
3	$\frac{4}{4}$			

$\frac{0}{2}$	$\frac{1}{0}$	$\frac{2}{4}$	$\frac{3}{2}$	$\frac{4}{3}$
1	$\frac{3}{3}$	$\frac{0}{1}$		
$\frac{4}{2}$	$\frac{2}{2}$		0	
3	$\frac{4}{4}$			0

The first matrix cannot be completed without loss of regularity of some relation (in the third row of 4th column there cannot be placed any number without loss of regularity of the corresponding relation). In the second matrix, the number 4 can be placed only by one way (in the 4th column), and thus the whole matrix is determined:

0	1	$\frac{2}{2}$	$\frac{3}{2}$	$\frac{4}{3}$
$\frac{1}{2}$	$\frac{0}{3}$	$\frac{4}{3}$	$\frac{1}{4}$	$\frac{3}{2}$
$\frac{4}{2}$	$\frac{2}{4}$	$\frac{3}{3}$	$\frac{0}{4}$	$\frac{1}{1}$
3	4	1	2	0

Calculating all $p_{i j}^{\boldsymbol{k}}$ (see chapter 5) we get

$$
\begin{array}{lll}
p_{12}^{1}=p_{21}^{1}=0 & p_{23}^{1}=p_{32}^{1}=1 & p_{11}^{1}=0 \\
p_{12}^{2}=p_{21}^{2}=0 & p_{23}^{2}=p_{32}^{2}=0 & p_{11}^{2}=0 \\
p_{12}^{3}=p_{21}^{3}=0 & p_{23}^{3}=p_{32}^{3}=0 & p_{11}^{3}=1 \\
p_{12}^{4}=p_{21}^{4}=0 & p_{23}^{4}=p_{32}^{4}=0 & p_{11}^{4}=0 \\
p_{13}^{1}=p_{31}^{1}=0 & p_{24}^{1}=p_{42}^{1}=0 & p_{22}^{1}=0 \\
p_{13}^{2}=p_{31}^{2}=0 & p_{24}^{2}=p_{42}^{2}=0 & p_{22}^{2}=0 \\
p_{13}^{3}=p_{31}^{3}=0 & p_{24}^{3}=p_{42}^{3}=1 & p_{22}^{3}=0 \\
p_{13}^{4}=p_{31}^{4}=1 & p_{24}^{4}=p_{42}^{4}=0 & p_{22}^{4}=1 \\
p_{14}^{1}=p_{41}^{1}=0 & p_{34}^{1}=p_{43}^{1}=0 & p_{33}^{1}=0 \\
p_{14}^{2}=p_{41}^{2}=1 & p_{34}^{2}=p_{43}^{2}=0 & p_{33}^{2}=1 \\
p_{14}^{3}=p_{41}^{3}=0 & p_{34}^{3}=p_{43}^{3}=0 & p_{33}^{3}=0 \\
p_{14}^{4}=p_{41}^{4}=0 & p_{34}^{4}=p_{43}^{4}=0 & p_{33}^{4}=0 \\
p_{44}^{1}=1 & p_{44}^{2}=0 & p_{44}^{3}=0
\end{array}
$$

The other necessary equalities are given by 1.5. and 1.7. Consequently A4 is satisfied. The foregoing construction implies that other schemes satisfying $\mathbf{A} 1, \mathbf{A} 2, \mathbf{A} 3$ for $|X|=5, n=4$ are different only in numbering relations.
4.2. Theorem. Let (X, R) satisfy $\mathbf{A} 1, \mathbf{A} 2, \mathbf{A} 3, R_{i}, R_{j}, R_{k} \in R, R_{i} \neq R_{i}^{-1}, R_{j}=$ $=R_{j}^{-1}, R_{k}=R_{k}^{-1}, v_{i}=v_{j}=v_{k}=1, p_{i j}^{k}=1$. Then $p_{j i}^{k}=0$ (i.e. (X, R) does not satisfy A4).

Proof. Let $(x, y) \in R_{k}$ hold. Then there exists one and only one $z \in X$ such that $(x, z) \in R_{i},(z, y) \in R_{j}$. Since $R_{j}=R_{j}^{-1}$ and $R_{k}=R_{k}^{-1}$, it holds $(y, x) \in R_{k},(y, z) \in$ $\in R_{j}$ and at the same time for $z^{\prime} \neq z$ it holds $\left(y, z^{\prime}\right) \notin R_{j}$, because $v_{j}=1$. Further $(z, x) \notin R_{i}$ is valid, because $R_{i}^{-1} \neq R_{i}$ and $(z, x) \in R_{i}^{-1}$. Thus $p_{j i}(y, x)=0$ and hence according to A 3 we have $p_{j i}^{k}=0 \neq p_{i j}^{k}$.

Remark. The situation described in Theorem 4.2. is expressed by the graph on Fig. 2. Completing this graph so that it may satisfy A1, A2, A3 we get the graph on Fig. 3. Thus for $|X|=6$ it is now possible to construct such a system of relations which satisfies A1, A2, A3 and does not satisfy A4. The matrix record is

0	$\frac{1}{2}$	$\frac{2}{4}$	$\frac{3}{5}$	$\frac{4}{2}$	$\frac{5}{3}$
$\frac{1}{3}$	$\frac{0}{4}$	$\frac{4}{0}$	$\frac{5}{2}$	$\frac{2}{5}$	$\frac{1}{1}$
$\frac{2}{4}$	$\frac{5}{4}$	$\frac{3}{3}$	$\frac{2}{0}$	$\frac{1}{3}$	$\frac{4}{4}$
$\frac{3}{5}$	$\frac{2}{2}$	$\frac{1}{1}$	$\frac{1}{4}$	$\frac{0}{3}$	$\frac{2}{0}$

For the values of i, j, k stated in Tab. 1 it holds, $1=p_{i j}^{k} \neq p_{j i}^{k}=0$.

| i | 1 | 2 | 3 | 1 | 1 | 4 | 2 | 4 | 4 | 3 | 5 | 1 | 5 | 2 | 3 | 5 | 4 | 5 |
| :--- |
| j | 2 | 1 | 1 | 3 | 4 | 1 | 4 | 2 | 3 | 4 | 1 | 5 | 2 | 5 | 5 | 3 | 5 | 4 |
| k | 4 | 5 | 4 | 5 | 2 | 3 | 1 | 5 | 1 | 5 | 2 | 3 | 1 | 4 | 1 | 4 | 2 | 3 |

Tab. 1

Fig. 2

Fig. 3

Remark. As far as (X, \boldsymbol{R}) satisfies $\mathbf{A 1}, \mathbf{A} 2$ and all the relations from \boldsymbol{R} are regular, it may occur even the situation when there is not satisfied the axiom A3. In this situation there may occur the case where for some i, j, k do not exist simultaneously the numbers $p_{i j}^{k}, p_{j i}^{k}$ (example in Remark to 1.4.) but also the case where one of the numbers $p_{i j}^{k}, p_{j i}^{k}$ exists and the other does not. For example the system described by the matrix

0	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{3}{5}$	$\frac{4}{2}$	$\frac{5}{4}$
$\frac{1}{3}$	$\frac{0}{2}$	$\frac{3}{0}$	$\frac{5}{4}$	$\frac{2}{5}$	$\frac{1}{3}$
$\frac{2}{4}$	$\frac{5}{4}$	$\frac{4}{4}$	$\frac{0}{0}$	$\frac{1}{3}$	$\frac{3}{3}$
$\frac{3}{5}$	$\frac{1}{4}$	$\frac{1}{1}$	$\frac{1}{2}$	$\frac{0}{3}$	$\frac{2}{0}$

satisfies A1, A2, all the relations are regular, but e.g. the number p_{12}^{4} does not exist and simultaneously $p_{21}^{4}=0$.

5. Association schemes for $|X| \leqq 6$

In the present chapter, there is given a survey of all association schemes for $|X| \leqq 6$ excepting those arised from aftermentioned schemes, by renumbering relations or renaming elements of carrier.

The used construction of association schemes is described in the proof of Theorem 4.1. For computing the values $p_{i j}^{k}$ (proof of their existence and verifying the axiom A4) there was used the computer EC 1033. The program is based on the relation (2.5.) from [4].

The results obtained by means of computer show that the example quoted in Remark to 4.2. is for $|X|=6$ the only case when (X, R) satisfies A1, A2, A3 and does not satisfy A4. For schemes with four classes it is valid for $|X| \leqq 6$:

If (X, \boldsymbol{R}) satisfies $\mathbf{A} 1, \mathbf{A} 2, \mathbf{A} 3$, then it satisfies $\mathbf{A} 4$, too.

A survey of association schemes

This survey does not contain association schemes with one class (for every $|X| \geqq 2$ there exists an association scheme with one class). With each association scheme there are quoted nonzero numbers $p_{i j}^{k}$ [excepting the numbers of the type $p_{i 0}^{i}, p_{0 i}^{i}($ see 1.5.)].
$|X|=3$

$\frac{0}{2}$	$\frac{1}{0}$	$\frac{2}{1}$
1	$\frac{2}{2}$	$\frac{0}{}$

(nonsym.)

$$
\begin{aligned}
& v_{1}=v_{2}=1 \\
& p_{22}^{1}=p_{11}^{2}=1
\end{aligned}
$$

$|X|=4$

0	$\frac{1}{2}$	$\frac{2}{1}$	$\frac{1}{2}$
$\frac{1}{2}$	$\frac{0}{1}$	$\frac{1}{0}$	$\frac{1}{1}$
1	$\frac{1}{2}$	$\frac{1}{1}$	$\frac{0}{0}$

(sym.)

$$
\begin{aligned}
& v_{1}=2 \\
& p_{12}^{1}=p_{21}^{1}=1
\end{aligned} \quad v_{2}=1
$$

(sym.)
$v_{1}=v_{2}=v_{3}=1$
$p_{23}^{1}=p_{32}^{1}=p_{13}^{2}=p_{31}^{2}=p_{12}^{3}=p_{21}^{3}=1$

0	1	2	$\frac{3}{3}$
$\frac{0}{2}$	$\frac{1}{3}$	$\frac{2}{3}$	
$\frac{3}{1}$	$\frac{2}{2}$	$\frac{1}{3}$	$\frac{0}{0}$

(nonsym.)
$v_{1}=v_{2}=v_{3}=1$
$p_{23}^{1}=p_{32}^{1}=p_{11}^{2}=p_{33}^{2}=p_{12}^{3}=p_{21}^{3}=1$
$|X|=5$

0	1	1	$\frac{2}{2}$	$\frac{2}{2}$
1	0	2	$\frac{1}{2}$	$\frac{2}{1}$
1	2	0	$\frac{2}{2}$	$\frac{1}{2}$
2	1	$\frac{2}{2}$	$\frac{0}{1}$	$\frac{1}{2}$
2	2	1	1	0

$\frac{0}{2}$	$\frac{1}{0}$	$\frac{2}{4}$	$\frac{3}{1}$	$\frac{4}{3}$
1	$\frac{0}{3}$	$\frac{1}{0}$	$\frac{4}{4}$	$\frac{2}{2}$
$\frac{4}{3}$	$\frac{2}{4}$	$\frac{3}{3}$	$\frac{0}{1}$	$\frac{1}{4}$
3	4	1	2	0

$|X|=6$

0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{1}$	$\frac{1}{2}$	$\frac{2}{1}$
$\frac{1}{1}$	$\frac{0}{2}$	$\frac{2}{0}$	$\frac{1}{1}$	$\frac{1}{1}$	$\frac{1}{1}$
1	$\frac{1}{1}$	$\frac{1}{1}$	$\frac{1}{0}$	$\frac{2}{2}$	$\frac{1}{1}$
1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{2}{2}$	$\frac{0}{0}$	$\frac{1}{1}$
2	1	1	$\frac{1}{1}$	1	0

0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{2}{1}$	$\frac{2}{1}$
1	0	$\frac{2}{2}$	$\frac{2}{2}$	$\frac{1}{1}$	$\frac{1}{1}$
1	$\frac{2}{1}$	$\frac{0}{2}$	$\frac{2}{2}$	$\frac{1}{1}$	$\frac{1}{1}$
$\frac{2}{2}$	$\frac{1}{2}$	$\frac{1}{1}$	$\frac{1}{1}$	$\frac{0}{0}$	$\frac{2}{2}$
1	1	1	1	2	0

0	1	1	1	2	3
1	0	2	3	1	1
1	3	0	2	1	1
1	2	3	0	1	1
3	1	1	1	0	2
2	1	1	1	3	0

(sym.)

$$
\begin{aligned}
& v_{1}=v_{2}=2 \\
& p_{12}^{1}=p_{21}^{1}=p_{22}^{1}=p_{1,1}^{2}=p_{12}^{2}=p_{21}^{2}=1
\end{aligned}
$$

(nonsym.)

$$
\begin{aligned}
& v_{1}=v_{2}=v_{3}=v_{4}=1 \\
& p_{23}^{1}=p_{32}^{1}=p_{44}^{1}=p_{14}^{2}=p_{41}^{2}=p_{33}^{2}= \\
& =p_{11}^{3}=p_{24}^{3}=p_{42}^{3}=p_{13}^{4}=p_{31}^{4}=p_{22}^{4}=1
\end{aligned}
$$

(sym.)

$$
\begin{aligned}
& v_{1}=4 \\
& p_{12}^{1}=p_{21}^{1}=1 \\
& p_{11}^{1}=2
\end{aligned} \quad v_{2}=1
$$

(sym.)

$$
\begin{array}{ll}
v_{1}=3 & v_{2}=2 \\
p_{22}^{2}=1 & p_{12}^{1}=p_{21}^{1}=2 \\
p_{11}^{2}=3 &
\end{array}
$$

(nonsym.)

$$
\begin{aligned}
& v_{1}=3 \quad v_{2}=v_{3}=1 \\
& p_{12}^{1}=p_{21}^{1}=p_{13}^{1}=p_{31}^{1}=p_{33}^{2}=p_{22}^{3}=1 \\
& p_{11}^{2}=p_{11}^{3}=3
\end{aligned}
$$

0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{2}{2}$	$\frac{3}{2}$
$\frac{1}{1}$	$\frac{1}{1}$	$\frac{1}{0}$	$\frac{2}{2}$	$\frac{3}{3}$	$\frac{2}{2}$
$\frac{1}{2}$	$\frac{3}{2}$	$\frac{2}{2}$	$\frac{0}{3}$	$\frac{1}{3}$	$\frac{1}{1}$
$\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{1}$	$\frac{1}{1}$	$\frac{1}{0}$

(sym.)

$$
\begin{aligned}
& v_{1}=v_{2}=2 \quad v_{3}=1 \\
& p_{11}^{1}=p_{22}^{1}=p_{23}^{1}=p_{32}^{1}=p_{12}^{2}=p_{21}^{2}=p_{13}^{2}=p_{31}^{2}=1 \\
& p_{12}^{3}=p_{21}^{3}=2
\end{aligned}
$$

REFERENCES

[1] Bose, R. C., Nair, K. R.: Partially balanced incomplete block designs, Sankhya, 4 (1939), 337-372.
[2] Bose, R. C., Shimamoto, T.: Classification and analysis of partially balanced incomplete block designs with two association classes, American Statistical Association Journal, 47 (1952), 151-184.
[3] Bose, R. C.: Strongly regular graphs, partial geometries and partially balanced designs, Pacific Journal of Mathematics, 13 (1963), 389-419.
[4] Delsarte, P.: An algebraic approach to the association schemes of coding theory, Philips research reports supplements, No. 10, 1973.
L. Bauer

66295 Brno, Janáčkovo nám. 2a
Czechoslovakia

[^0]: * For Chapter 1, 2 see Association schemes I. Arch. Math. 4, 1981, 173-183

