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FORCED OSCILLATIONS IN FUNCTIONAL 
DIFFERENTIAL EQUATIONS 

WITH DEVIATING ARGUMENTS 

BHAGAT SINGH and TAKA§I KUSANO 

(Received May 20, 1981) 

1. INTRODUCTION 

Our main purpose in this paper is to study the oscillatory phenomenon as
sociated with the equation 

(1) Lny(t) + F(t,y{g(t))) = f(t), 

where n ^ 2 and Ln is a disconjugate differential operator denned by 

(2) jryfft-. 1 <i - 1 d <* ' . 1 d X0 
1 } ^^ Pn(t) dt Pn-X(t) dt - dt Pi(t) dt Po(t) • 

It is assumed throughout that: 

(i) Pi : [#, oo) -> (0, co), 0 | / ^ «, are continuous; 
(3) (ii) /, g : [a, oo) -• R are continuous, and lim g(t) = oo; 

f->oo 

(iii) F : [a, oo) x R -» R is continuous, and there are continuous functions 
q>, \jt : [a, oo) -> R such that for each t e [a, oo) F(f, y) ^ <p(0 if y _S 0 
andF(f,y) g iKO-fy-S 0. 

We introduce the notation: 

. 0 , . . . _ w л -V(0 
D°(УÌPo)(t) = -(4) v i - o / w _ o ( 0 > 

D'()';po>-.Pi)(0 = -^ -^£> i " 1 (3 ' ;po , - .p i - 1 ) (0 , l sW- i" . 

Equation (1) can then be rewritten as 

IT(y,Po,— ,Pn) (0 + F(t,y(g(t))) -/(*•). 
The domain -#(£„) of Z,„ is defined to be the set of all functions y : \Ty, oo) -> R 

such that Dl(y;p0, •••»/».) (0. 0 _£ i :£ », exist and are continuous on \Ty, oo). 
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In what follows by a "solution" of equation (1) we mean a function y e 3f(Ln) 
which is nontrivial in any neighborhood of oo and satisfies (1) for all sufficiently 
large t. We make the standing hypothesis that equation (1) does possess solutions 
in this sense. A solution of (1) is called oscillatory if it has arbitiarily large zeros; 
otherwise the solution is called nonoscillatory. 

A great many oscillation criteria are known for unforced equations of the form 

(5) ( — ^ yik)(t)jn ^ + F(t, y(g(t))) = 0. 

For this we refer the reader to Sevelo and Vareh [8], Onose [7], Singh [10], Ku-
sano and Onose [5] and Naito [6]. A recently published Russian book by Sevelo [9] 
gives a detailed list of references on the subject. Extensions of these results to more 
general unforced equations of the form Lny(t) + F(t, y(g(t))) = 0 seem to be in 
progress; see, for example, Kitamura and Kusano [4], 

Obtaining an oscillation criterion for the forced equation (1) (f(t) # 0) is not 
so simple. To the best of the authors' knowledge, the first attempt in this 
direction was made by Kusano and Onose [5] who studied the equation 
yin)(t) + q(t)h(y(g(t))) = f(t)9 and later by other authors including Singh [11}. 
The main technique rendered the forced equation into an almost unforced 
equation by employing a function k(t) such that A(B)(0 = f(t) and A(,)(f) -» 0 
as t -+ oo for i = 0, 1, . . . , » - 1. 

In this work we shall present an elementary but new technique to obtain 
oscillation criteria for equation (1). The result roughly asserts that if the forcing 
term At) oscillates with amplitude sufficiently large, then all solutions of (1) are 
oscillatory regardless of the oscillation or nonoscillation of the associated unforced 
equation. Related results can be found in Graef, Grammatikopoulos and Spikes [1], 
and Graef and Kusano [2]. 

2. PRELIMINAR IES 

We introduce the notation for repeated integrals which will be extensively 
utilized in the formulations and the proofs of our theorems. 

Let ht : [a, oo) -* R, 1 ^ i ^ N, be continuous functions. We put for t, s e [a9 oo) 

/ o = = 1 

( 6 ) Ii(t,s;hl9...9hi)=\h1(r)Ii-1(r,s;h29...9hi)dr, l^i^N. 
s 

The following identities are easily verified: 

(7) W,s;hl9 ...,ht) = ( - 1 ) ' / | ( J , t;hi9 ....h.l 
t 

(8) Itt,s;ht,...,hd- ih^r)I,.1(t,r;h1,...,hl.1)dr. 
S 
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Lemma 1. Suppose that ht(t)91 £i g N9 are positive on [a9 oo). IfIN(t9 a;hi9...9hN) 
is bounded on [a, oo), then so are the functions It(t9 a; hi9 ..., h^for 1 g£ i g£ JV — 1. 
Proof. Let b > a be fixed. Using (8), we have for / ^ b 

t 

IN(t9 a; hi9 ...9hN) = f hN(r)IN-x(t9 r; hi9 ...9hN-t)dr 
a 

b 

k ihN(r)IN-i(t9r;hi9...9hN-i)dr 
a 

b 

£ /*--(*, b; hi9 ...9hN-t) f AN(r)dr, 
a 

from which it follows that IN-X(t9 b; hx, ..., A,y-i) is bounded on \b9 oo). Hence 
IN-i(t9 #; hi, ..., hN-.t) is bounded on \a9 oo). The boundedness of It(t9 a; ht,..., ht) 
for 1 ^ / ^ iV - 2 follows by induction. 

Lemma 2. Ify e B(Ln)9 then for 0 g i ^ n - 1 awd f, s s [r.,, oo) we have 

(9) l> i(y;Po....JPi)(0= E l ) y(> ; ;Po>. . . ,Py)(0^-^,5;p i + 1 , . . . ,p i)4-
r 

+ J/w-i-i(r,r;p^i,.. . ,pB_i)pn(r)DB(y;p0)-..5P»)(r)dr. 
5 

This lemma is a generalization of Taylor's formula with remainder encountered 
in calculus. The proof is straightforward. Note that the last integral in (9) may be 
rewritten as 

? /„(',-*;>!, ...9pn-i9pnD
n(y;p09 ...9pn)) 

t ri r2 rn-2 rn-i 

= J/>i('i) J PiiTi) J ... J P„-i(rrt-i)f^(ODB(^;p0>...^n)(O^drl,-i...dr2dr1. 

3. MAIN RESULTS 

Theorem 1. Suppose there is a function Q : \a9 oo) -* (0, oo) such that Q'(t) £ 0 
on \a9 oo) and the following conditions are satisfied for all T ^ a: 

(10) lim In-i(t9T;Qpi9p29 ..., pn-x) < oo, 
t->oo 

(11) liininf /„(*, T;Qpi9p29 ...9pn-i9pn(f - <p))= -oo, 
f-*oo 

(12) limsupIn(t, T;Qpv,p2,.... pn.t,pJJ - tfO) - oo. 

f->00 

Then all solutions of equation (1) are oscillatory. 

Probf. Let y(t) be an eventually positive solution of (1). Let T be such that 
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y(g(t)) > 0 for / i= T. From Lemma 2 (with i = 1 and s = T) it follows that 
я - l 

(13) ^ ( y ^ o . P O W ^ I ^ / y - i ^ T ; ^ , 9pj) + 
/ - = i 

+ /„-l(^ F;p25 ...,Pn-l>P»£rt(y;PO, .-vPn)) 

for f ^ T9 where cj = Dj(y;p09 ...9pj)(T). In view of condition (3) - (iii) we 
have 
(14) Pn(t)D

n(y;p0, ..., p„) (0 = pm(t) f(t) - pn(t) F(t9 y(g(t))) 

£P*(t)(f(t)-q>(t))> t*T. 

Combining (13) with (14), we obtain 
n - l 

(15) D1(y;p09p1)(t)SYJCjIj-1(t9T;p29...9pj) + 
1=i 

+ In-i(t,T;p29...9pH-l9pm(f-q>))9 t^T. 

We multiply (15) by o(0Pi(0 and integrate it over \T91]. Noting that 

\Q(s)p1(s)Di(y;po9p1)(s)<is = ] Q(s)(D0{y;po)(s))'As 

= Q(t)D°(y; Po)(t) - Q(T)D°(y; p0)(T) - W(s)D0(y;p0)(s)ds 
T 

£ Q(t) D°(y; p0) (0 - Q(T) D°(y;p0) (J), / £ -T, . 
we see that 

(16) Q(t)D°(y; p0)(t) £ £ Cjlj(t, T; QPl9p29 ...9Pj) + 
1-o 

+ In(t,T'9QPl9p29 ...9pn-l9pn(f~ <p)) 

for t ^ T, where c0 = .2(7) D°0>; P0) (-0- Condition (10) guarantees that 
/,(*, -T; QPt,p29 >->,Pj), 0 ^ j ^ « - 2, are bounded on [T, oo) (see Lemmja 1). 
Using this fact and (11), we conclude from (16) that 

(17) liminf<K02>%>p;^ 
f->oo f-*oo Po\l) 

which contradicts the assumption that y(t) *s eventually positive. 
Likewise, if y(0 is an eventually negative solution of (1), we are led to a con

tradiction with the heljp of (12). This completes the proof. 

Theorem 2. Suppose there is a function o : [a, oo) -* (0, oo) such that 
(<r'(0/Pi(0)' ^ 0 on [a9 oo) and the following condition^ are satisfied for all T ^ a: 

(18) limIH-1(t9T;ff~2pl9(rp29p39..,9pu-1)<co9. 
f->oo 

(19) lira inf In(t9 T; a* px, ap29 p3, ..., pn-t 9 pn(f - <pj) == - oo, • 
f-»oo 
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(20) timinf /„(/, T; a 2pl,ap2, p3, ...,p„-x,p„(f - <l>)) - oo. 
r-*oo 

Then all solutions of equation (1) are oscillatory. 
Proof. Let y(t) be a nonoscillatory solution such that y(g(t)) > 0 for / £> T. 

By Lemma 2 (with i = 2 and s = T) and (14) we get 
i r - l 

(21) D2(>;; p0, px, p2)(t) <: £ O7/-*^ T;p3, ...,Pj) + 
1=2 

+ /»-2(t, T\P^ ><->Pn-l,Pn(f ~ V>)) 
for r = r, where c; = Dj(y;p0, ...,Pj)(T). Multiplying (21) by cr(t)p2(t) and 
integrating over [T7, ?], we have 

r n - l 

(22) $cr(s)p2(s)D2(y; p0, pl-,p2)(s)ds = £ <?,/,_,.(*, T; trft, Pa, .... Py) + 
r y=2 

+ I„-i(*\ F;(Tp2,p3, ...,p„-l9pn(f- (?)) 

for / = F. Integrating the left hand side of (22) by parts, we have 

(23) )^s)(D1(y;Po,pl)(s)yds 
T 

= a(t)D\y, p0, Pl)(t) - a(T)D\y; p0, Pl)(T) - / -£~r(IAy, Po)(s))'ds 

= a(t)Dl(y; Po, Pl)(t) -^D°(y; p0)(t) - c, + / (j^j^i Po)(*)'ds; 

^wf̂ o^^0)'"^ '-r' 
where ct = er(T)/>10';/>o,/>i) (T) + a(T)D°(y;p0) (T)/Pl(T). From (22) and (23) 
it follows that 

(24) ^(^D\y;p0)(t))/ZcjIj-i(t,T;ap2,p3,...,pj) + 

+ /„_i(r, T; op2,p3, ...,P„-i,p„(f- q>)) 

for / _ T Dividing (24) by a2(t)/Pi(t) and integrating, we obtain 
1 n-l 

(25) -77rI>°^; i»o)(0 = £ c;7/'' ^ ff" V . ^ 2 , Ps, :,Pj) + 
0 \ U y = 0 •-' -

+ I„(t, T; a~2pt, ap2,P3, ..,,p„.x,p„(f - <?)) 

for t = T, where c0 = D°(y;p0)(T)/a(T). From (25), (18) and (19) we see that 

lim inf - ^ D°(y; p0) (t) = lim inf ff - - oo, 
»-co «W f-oo ff(0M0 

which contradicts the eventual positivity of y(t). A similar argument holds if y(t) 
is an eventually negative solution of (1), and the proof is complete. 
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Remark 1. It is often assumed that the function F(t, y) satisfies yF(t, y) ^ 0 
for all y. In this case we can take <p(t) = \j/(t) = 0 in Theorems 1 and 2. 

Remark 2. Suppose in particular that Lny(t) = y(w)(0- Then conditions (10), 
(11) and (12) respectively reduce to 

t 

(26) lim J Q(S)sn~2 ds < oo, 
f->oo iV 

(27) lim inf } Q(S) J (s - r)""2 [/(r) - ?(r)] dr = - oo, 
t-*oo T T 

(28) lim sup J e(s) J (s - r)""2 [/(r) - tfr)] dr = oo, 
J-KX) T T 

and conditions (18), (19) and (20) respectively reduce to 

(29) lim J a~2(s) J a(r)rn"3dr ds < oo, 
f-*ao T T 

t s r 

(30) lim inf f o~\s) J a{r) J (r - M)""3[/(H) - <?(«)] <*« dr ds = - oo, 
f->oo T T T 

and 

(31) lim sup J <T2(s) J a(r) J (r - w)n"3 [/(w) - ^(w)] dw dr ds = oo. 
f-*oo T T T 

Example 1. Consider the equation 

(32) y«v)(t) + t2ny(t - n) = -63 e21 sin It, t £ *. 

If we choose e(t) = e " ' (or <r(0 = e'), then the conditions (26) - (28) (or (29) - (31)) 
can easily be verified with <p(t) = ij/(t) s 0. Hence all solutions of equation (32) 
are oscillatory by Theorem 1 (or Theorem 2) and Remark 2. In fact.y(0 = e2t sin 2t 
is one such solution. We note that all solutions of the unforced equation 

y<iv)(t) + t2ny(t - -it) = 0, t^n, 
are oscillatory. 

Example 2. Consider the equation 

(33) (t2yj + te~t2 sin (log t), t ^ I. 

The associated unforced equation 
1 (>V)' + tey = 0 

has a nonoscillatory solution y(t) = - log t. It is easy to verify that the conditions 
(10)-(12) of Theorem 1 are satisfied with Q(t) = 1, (p(t) = 0 and \j/(t) = t, and 
so all solutions of equation (33) are oscillatory. 

We now obtain conditions which guarantee the oscillation of all bounded solu
tions of equations of the form 



(34) Lny(t) + q(t) h(y(g(t))) - /(*), 

where L n , /and g are as above and q : [a, oo) -+ R and h : R ~+ R are continuous 
functions. 

Theorem 3. All bounded solutions of equation (34) are oscillatory if there is 
a function Q : [a, oo) -> (0, oo) such that Qf(t) £ 0 on [a9 oo) and, in addition to (10), 
the following conditions are satisfied for all k > 0 and all T ^ a; 

(35) lim inf In(t, T; Qpi9p29 ..., pn-i9 pn(f + fc | 4 |)) = -00, 
l ->oo 

(36) lim sup /„(*, T; Qpl9 p2, ..., pn-i9 pn(f -k\q\))= 00. 
f->oo 

Theorem 4. All bounded solutions of equation (34) are oscillatory if there is a func
tion a : [a, oo) -*• (0, oo) swch that (ff'(0/Pi(0)' = 0 ort [0, oo) and, in addition to (18), 
the following conditions are satisfied for all k > 0 a/id a// T ^ a; 

(37) lim inf /„(*, T; o"2pl9ap29pZ9 ..., pn-t, pn(f + fe | q |)) = -oo, 
f-*oo 

(38) lim sup In(t9 T; a~2p1, apl9 p39 ..., pn-i9p„(f - fe I g I)) = oo. 
f-»oo 

Proof of Theorem 3. Let y(t) be a bounded nonoscillatory solution of (34). If y(t) 
is eventually positive, then there are positive constants M and T such that 0 < 
< y(g(t)) < M for t = T. Let K = max {\ h(y) \ : 0 £ y £ M). Then 
0(0 h(y(g(t))) ^ —K\ ^(0 I for / ^ T. Proceeding now exactly as in the proof of . 
Theorem 1, we obtain 

(39) Q(t)D°(y; p0)(t) £ £ Cjlj(t9 T; QPl9p29 ...9pj) + 

+ /„(/, T;QPl9p29 . . . ,p n . 1 ,p n ( /+ K\q\)) 

for t ^ T9 where c,., 0 ^j g « - 1, are constants. Passing to the lower limit 
as t -* oo in (39), we see that (17) holds, a contradiction. A parallel argument 
applies if y(t) is eventually negative. 

Theorem 4 can be proved similarly. 

Remark 3. Under the hypotheses of Theorem 3 (or Theorem 4) all nonoscillatory 
solutions of (34) are necessarily unbounded. 

Remark 4. Conditions (35) and (36) hold if 

(41) liminf In(t9 T; Qpi9pl9 ..., pH-u pnf) = -00, 
f->oo 

(42) lim sup In(t9 T-9Qpl9p29...9pm-l9 pnf) = oo, 
f->oo 

and 

(43) lim In(t, T; Qpítp2,.... p„-1, p„ | q |) < co. 
f->00 
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Example 3. Consider the equation 

(44) y'"(t) + en sin (log t). exp [y(e~n0] = ' sin (log 0 + 2/"3, t = 1. 

It is not hard to check that the conditions of Theorem 3 are satisfied with Q(t) = t"3. 
Therefore all bounded solutions of (44) are oscillatory. Equation (44) has an un
bounded nonoscillatory solution y(t) = log /. Notice that condition (43) is not 
satisfied for this choice of Q(t). 

Remark 5. A disconjugate differential operator Ln of the form (2) is said to be 
in the first canonical form if 

00 

(45) • JPi(t)dt =oo for 1 = i = n - 1. 
a 

It has been shown by Trench [12] that every disconjugate operator can be put 
in the first canonical form in an essentially unique way. Oscillation of equation (1) 
with Ln in the first canonical form has been studied by Graef and Kusano [2]. 

We say that an operator Ln of the form (2) is in the second canonical form if 

00 

(46) JPi(t)dt < oo for 1 ^ i ^ n - 1. 
a 

Very recently Granata [3] has proved that every disconjugate operator can be 
represented in the second canonical form. If Ln is in the second canonical form, 
then it is easy to see that 

lim In-t(t9 T; pi9p29 ..., p„-_) < oo 
f->oo 

for all T ^ a9 and we have the following results as corollaries to Theorems 1 and 3. 

Theorem 5. Suppose (46) holds. If 

(47) lim inf In(t9 T;pl9...9 pn.l9 pn(f - q>)) -= - oo, 
f-*oo 

(48) lim sup In(t9 T;pl9 ...9pn.i9 pn(f - ^)) = oo, 
t-»oo 

for all T ^ a^then all solutions of (I) are oscillatory. 

Theorem 6. Suppose (46) holds. If 

(49) liminf In(t9T;pl9.. .9pn-l9 pn(f + k\q \)) = -oo, 

(50) limsup In(t,T; Pl, . . . , p . . „ />„(/ - * l _l))-- »» 
f-*oo 

for all k > 0 and T ^ a9 then all bounded solutions of (34) are oscillatory. 

16 



We re-examine the example 1. The second canonical form of the operator 
d4/d/4 is 

df4 t3 df At dt dt t*' 

and so equation (32) is equivalent to 

(51) (t2(t2(t2(r3y(t))')')')' + e2nt3y(t - n) = -63f3 e2t sin2t. 

Conditions (47) and (48) are satisfied for (51), and it follows from Theorem 5 that 
all solutions of (32) are oscillatory. 

The actual computations leading a general operator Ln to its first and/or second 
canonical form are tedious. 
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