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ARCH. MATH. 3, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS 
XX: 101-112,1984 

THE ASYMPTOTIC BEHAVIOUR 
OF SOLUTIONS OF THE DIFFERENTIAL 

EQUATION OF THE THIRD ORDER 

MIROSLAV BARTUSEK 

(Received April 18, 1983) 

Consider the differential equation 

(i) ym^At,y,y,f), 

where/, defined on D = {(t, xt9 x2, xz) : te [0, oo), | x{ \ < oo} satisfies the local 
Carath6odory-conditions and 

(2) f(t9xl9x29x3)x1 S 0. 

By a solution of (1) we shall mean a function y which, along with its deri
vatives of the first, second order, is absolutely continuous on each segment of 
the interval [0, oo) and satisfies (1) for almost all t. 

Put N = {1, 2, . . .}. Let L(t0, oo —) be the set of all functions that are summable 
on each finite segment of [r0, oo). 

In the present paper the behaviour of solutions of (1), (2) will be studied. This 
problem of oscillatory solutions was investigated in [1]. Many authors deal with 
the problem of the existence of solutions of (1), (2), see e. g. [2]. 

Definition 1. The solution y of (1), defined on [r0, tt) e [0, oo) is called non-

continuable if either tx -=- oo or tt < oo and lim sup J] | ^(,~1)(t) | = oo holds. 

Definition 2. The solution y defined on [t0, oo) is called proper j/sup | y(t) \ > 0 

for an arbitrary number % e [f0, oo). 

Definition 3. The solution y defined on [to, b) is called oscillatory if there exists 
a sequence {tk}f of zeros of y such that lim tk -» f)t 

k-*oo 

Definition 4. The equation (1) has the property A0 if every proper solution y is 
either oscillatory or | y«\t) \ j 0 when t f oo, i a* o, 1, 2. The equation (1) has the 
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property Aif i -= 1, 2 if every proper solution y is either oscillatory or lim y^O =* 0. 
f-+oo 

A:*i , . . . , 2. 
The sufficient conditions for (0 which should have the property At are given 

in [2]. 
When investigating (1) we meet solutions of the types: 
I. The solution y defined on [t0, tt)f tx <£ oo is strongly oscillatory to the left: 

There exist sequence {*£}, i = 0,1, 2, k e N such that lim f* = tt and 
* - * o o 

y(00i) = o, t°k<t2
k<tl<t°k+if 

(3) y(0(0y(0>0 on (t°kfti), i = 0, l ,2 

y(0(0 y(0 < 0 on (4, tf+ i) for i = 0,1, y'"(t) y()£0 

on [4>'fc+i)> fceN holds. 

II. The solution y defined on [f0, oo) is different from zero on (t0f oo) and there 
exists a number x e [f0, oo) such that. 

(4) y(0y'(0 = 0, y(0y"(0 = 0, y" sgn >> is nonincreasing on [t, oo). 

III. The solution yf defined on \tx, t2), t2 g oo is monotone and ( - 0fy(0y(i)(0 > 
> 0, limj ( 0(0 = 0 for i = 1, 2, lim y(t) = C. Moreover, if r2< oo then C = 0. 

t-*t% t-*t2 

IV. The solution yf defined on (f0, ti], 0 <; tx is strongly oscillatory to the right, 
there exist sequences {/{},/ = 0,1, 2, i * - 1 , - 2 , ... such that lim t*k « f0, (4) 

Jfc —> — co 

and lim y™(t) = 0, / = 0, I, 2 hold. 
t~»fo 

V. j;(0 * ±(c t + c20
2» ct and c2 are suitable constants, | ct | + | c2 | # 0, 

VI. j ( 0 s 0 on [t0, tj, tt £ oo. 
The following lemma can be proved directly from (2). 

Lemma 1. Let y be the solution of (\)f (2) defined on [t0, b). Then the function 
y" sgny is nonincreasing on [f0, fc), t # t* where f* is.a zero of y. 

The following function is of great importance 

(5) F(0 = / 2 ( 0 - 2 y ( 0 / ( 0 . 

Lemma 2. Let the solution y be defined on [?0, *). Then the function (5) is non-
decreasing and 

(6) F(t) 2 0 on [tif / 2 ] , t0 <; tt <t2oy is of the type V or VI on [tlf t2]. 

Proof. By virtue of (2) 

F(t2) - F( t) - jV(0d* - -J2y( )yw(0dl 2 0, *, g <2 
ti t t 
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holds and thus F is nondecreasing. The validity of the relation <= in (6) is trivial. 
Suppose that F zs Oon(tl9 f2] and let y be not trivial. Let 

(7) ( - l)(y(t) > 0, ( - 1)V(0 > 0 on / - (r„ u) c th, r2], tj - 1, 2. 

According to the assumption 

F(t) = /2(f) - 2y(0 y\t) m 0 on / 

we get by integration 

(8) y(t) = (-iy^(~i)'^^\^IJ\+Lj2^(t-t5)J. tseJ: 

From this and from (7) if y(tk) y'(tk) = 0, then 

A; = 3, 4. 
From this and as according to (8) y is not oscillatory we can conclude that (8) 

is valid on the whole interval [ti9 t2]. Thereby ts e (tl912)> y(t5) # 0, i9j must be 
taken from (7) for t = t5 and if y'(t5) •= 0, then j = 0. The lemma is proved. 

Lemma 3. Let y be a non-continuable solution 0/(1), (2), defined on [t0, b) and 
let F(t0) > 0. Then y is of the type I on [f0, b) or there exists only a finite number 
of zeros tk9 k = 1, ..., N ofy such that y is of the type II on [tN> oo). 

Proof. Let y be the solution, defined by the Cauchy initial conditions 
[^o»yo»yo»/o]-% We shall investigate all possibilities which may occur, whereby 
we shall consider in each case the first possibility, the second one can be proved 
similarly. 

1° yo = 0, y'0 = 0, yl > 0 or y0 g 0, y0 £ 0, yl < 0. 

If j is such that 

y(0 > 0, y'(t) > 0, y"(t) = 0, ym nonincreasing, t € (f0, b) 

then with respect to the y being non-continuable b = oo must be valid and y is of 
the type II on [f0, oo). 

Suppose that y is not of the type II. Then there exists number t2 such that 
y"(t2) = 0, y"(t) > 0 on [t0, t2). Moreover, according to 1° y(t) > 0, y'(0 > 0 
on( t 0 , t 2 ] . 

Suppose the zero of y' does not exist on (r2, b). In this case according to y being 
non-continuable b = oo and (see Lemma 1) 

(9) 7 ( 0 / ( 0 > 0, y"(t) £ 0, y" nonincreasing, t e (t2, oo). 
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As y is not of the type II it follows from (9) that there exist numbers tt e (if2, oo) 
and K > 0 such that 

y"(t)< -AT, te[tt, oo). 
Then the relation 

- / & ) £ V(t) - y'(h) - y W - tt) < -K(t - rO, if e (rlf 0 

gives us the contradiction for t -• oo. Thus our assumption is not true and there 
exists a zero t1 e(f2, b) of the function / and y(t) > 0, / ( f ) > 0, y"(tl) < 0. 
t e 02 , r1) and the zero t1 is simple. The existence of zero t°, t° e (r1, b) ofy can be 
proved similarly as for t1. We can see that in t° y(t0) = 0, /( to) < 0, y"(t0) < 0 
holds and we have the same situation as at t0. By repetition of this way we can 
conclude that y is of the type I. on some interval [t0, bt)9 bt g b. We prove by the 
indirect proof that bx = b. Let bx < b. As y is strongly oscillatory the solution 
can exist in bt only if 

(10) lim y'(t) = 0. 

But by virtue of (5) and of Lemma 2 

F(t°k)=y'2(t°k)^F(to)>09 

where {tk}9 limtk = bt is the sequence of zeros of y that contradicts (10). The 
C-*oo 

emina is proved in this case. 

2° yo%09y'o>09y"o£0 or y0 £ 0, y'0 < 0, y»0 £ 0. 

According to the fact, that in some right neighbourhood of t0 the same conditions 
as in 1° for t e (f2, t1) are fulfilled, the behaviour of y is similar. 

3° y0 ^09y'0£ 0, y'0' < 0 or y0 ^ 0, y'0 £ 0, f0 > 0. 

The conditions y'(t) < 0, y"(t) < 0 hold in some right neighbourhood of t0 and 
this situation was investigated in 1°, 1e (r1, t°) or t e (t091

2). 
According to the assumption of lemma F(t0) > 0, the last possible case is 

4° y0 > 0, y0 < 0, y"0 £ 0 or y0 £09y'0> 0, yj £ 0. 

First suppose that 

(11) y'(t)<0 on [t0,6). 

Then it is clear that lim y'(t) = lim y"(t) = 0, b -= oo (as y is non-continuable), 
f-*oo t-»oo 

But the relation 

0 < F(*0) £ lim F(t) =-= lim [>'2(*) - 2^(0 /(*)] - 0 ' 
f-*oo f-*oo 
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gives us the contradiction. Thus (11) is not correct and there exists a number tt 

such that y'(tt) =- 0. According to the assumption F(t0) > 0 and Lemma 2 
y(ti) y"(tt) < 0 holds. Thus we have 

y(h) > 0, y'(h) = 0, y"(tt) < 0, or y(tt) < 0, /(/*) - 0, y"(tt) > 0 

and there are given the same conditions at tx as in 3° for / *= t°. 
The lemma is proved. 

Theorem 1. Let y be a non-continuable solution of (I) and (2), defined on [t09 b), 
b g oo. Then y is successively of the types III, VI, IV on the intervals {t0f tt). 
ttl912)9 (t2> '3] <*nd either of the type I on [/3, b) or of the type II on [/3, 00). 
respectively. Here t0 g tt g t2 g t3 are suitable numbers. Some parts of y may be 
missing, the numbers t4e[/0,/3], t5e[ti9t2] may exists stick that t4 «• t0 or 
ts =- b -= 00. 

Proof. Let y be given by Cauchy initial conditions [t0ty09 y'09y0]. The 
structure of y for F(t0) > 0 was investigated in Lemma 3. Let 

(12) F(to)~0. 

If F(t) = 0, t e [/0, b)9 then according to Lemma 2 y is of the type VI or II on 
[r0, b). In the opposite case the number tt e [t0, b) exists such that F(/j) *» 0, 
JF(/) > 0 on (t!, b). The properties of y on (/j, A) were investigated in Lemma 3. 
If there exists a seequence {/£} of zeros of y, k « - 1 , --2, ... such that lim /£ - / t , 

then (4) must be valid and with respect to the fact, that y(i) is continuous at tt for 
1 = 0, 1, 2 we can conclude that y is of the type IV on some interval (ti9t2) <= 
c (tt, b). In the opposite case yi0(t) & 0 in some right neighbourhood of tt, 

t e (h, r3), 1 « 0,1, 2, £ I yw«i) I * 0. Let 
«»o 

(13) F(/0) < 0. 

First, consider the case 

1° y0>09 y'0^09 yl>0 or y0 < 0, y'0 £ 0, yj < 0. 

Put >>0 > 0 without the loss of generality. If there exists a number <J € (/0» *) such 
that F(0 = 0 holds, then the behaviour of y was studied above. Thereby yii} > 0 
on (t0f {), / » 0,1, 2. In the opposite case j> is of the type II. 

In virtue of (13) we must still see the case 

2° yo>09y'o<0>y"o>0 or y0 < 0, y'0 > 0, yl < 0. 

The situation Ffo) •» 0 for a number /x e(/0,Z>) was studied previously. Thus 
suppose that F(t) < 0, / e [/0, b). Then according to (5) 

XOJ>" (0>0 , re[/0,6). 
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If ,y is not of the type III, then exists a number t2 e (t0, b) such that y'(h) ** 0> 
But this situation was met in 1°. 
The theorem is proved. 

Remark 1. Let y be given on [t0,6) and y(t0)/('o) > 0, y(f0)y('o) > °> 
y,2(t0) > 2y(t0) y"(t0). Then, according to the proof of Lemma 3 there exists 
a number tt e [f0, b) such that y is of the type I on [tl9 b) or of the type II on 
th>«>). 

Remark 2. According to the Definition 4 and the Remark 1 if (1) has the 
property A09 then it has the strongly oscillatory solution of the type I. 

Definition 5. Denote: D(K9 Kt) =- \(t9 xl9 xl9 x3): -^r- g | xx | g K%t2
9 K S 

£ I *i 1, - ~ £ I x2 I £ Kxt9 K S I *a l» I *3 I 2 K\9 D^K, Kt) = j(f\ xi9x29 x3): 

I *i I £ K, - ~ - t ^ I *i ! = *-it2, ^ S I *a I £ *i'> I *a I £ 1 / 4 -

Theorem 2. Let t/ie constants K > 0, a, /? ex/sf swe/j that for an arbitrary C > 0 

(14) | /( t , * t x 2 , *3) | £ a«(0 | xt n x2 |' m />(*, C), 

(15) Jac(0*2a,+'df = oo 
o 

holds where ac e L(09 oo —). 
Then for the solution y of the type II 

(16) • lim/'(f)-=0 
f->00 

holds and differential equation has the property A2. 
Proof. The property (16) will be proved by the indirect proof. Thus suppose 

that lim | y"(t) \ =- K2 > 0. As y is of the type II there exists a number 16 [t0, oo) 
t-*oo 

such that yy(i) > 0 on [t, oo), * = 1, 2 holds. As the function y'sgny is non-
increasing the following estimations hold for a suitable t2 > x 

(17) Ctt ss K2(t - r) £ I y'(t) | £ | / ( T ) I + | fix) | (t - T) £ C2t, 

cv2^ ^ ( t - T)2 ̂  i KOI s i^wi + I/WIG - *) + 

2 (ť-TY:£C2ť\ 

ťє[ť2,oo), C.=^?-, C 2 - 2 | / ( t ) | . 
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Let t3 e [tz, oo) be such that | y(t) | ^ K9 | y'(t) \ ^ K9 f e [*3, oo) hold and 

let C == max! C2, -̂ — J. Then according to (14), (15) and (17) we have the follow

ing estimations 

I y"(h) I ^ J I r(t) I d. Z J ae(t) | y(t) |" I /(») I' d. £ 

£KJa c(0*2*+ / ?d*=oo , 
-3 

where K3 > 0 is a constant. The obtained contradiction proves the theorem. 

Remark 3. Kiguradze [2] proved the following result: The differential equation (1) 
has the property Ak9 k = 1, 2 if 

*+i 
f(t, xl9x29 x3) sgn xt S ~a(t) xko J\ (1 + | Xj \)XJ on D9 

1«i , 
fc+i 

A o >0, XJER9 j = 1,2, £ A , > 1 , aeL(0, oo-), a ^ 0, 
1=o 

]a(t)ty dt = oo, v* = 2 + fc(A0 - 1) + £ (k + 1 -})ks. 
o y--i 

For k = 2 the Theorem 2. generalizes this result. 

Theorem 3. Let exist constants K > 0, a, /? such that for an arbitrary C > 0 

I / ( ' , * i , x2, *3 I > ac(t) \xi\'(l + \x2 \Y on D^iT, C), 

Jac(0'ydf =oo 

hoWs where y is defined by one of the following possibilities 

1° J - y {[3 - sgn(a + e)](a + e) + [1 - sgn(j? - 2e)](/J - 2e)}, 

2° y = y [1 - sgn(2a + 0)](2a + 0) for a > - 1 , 

3° y = y [3 - sgn (a + 0/2) (a + 0/2) for $ < 2. 

ifere e e [0, 1), ac€L(0, OO—) is a non-negative function. Then the differential 
equation (1) has the property Ax. 

Proof. By virtue of Theorem 1 we must prove that the solution y of (1), (2) 
of the type II does not exist, its derivative is not equal to zero identically in some 
neighbourhood of oo. Thus suppose on the contrary that such a solution, defined 
on [t0, oo) exists and let y > 0 on [f0, oo) for simplicity. 
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It follows from the definition of y and Theorem 2 and its proof that 

(18) y'(t) > 0, y non-decreasing on [t0, oo), l i m / ( 0 =- 0 
1-*O0 

and 
o < y(t0) <> y(t) s /(t0) + y(t0) (t - t0) g iy(t0) t, 

(19) ^ t £ y'(t0)(t - t0) £ y(t) .£ y(t0) + f(t0)t
2 £ 2/(l0) t2 te[tl9 oo), 

where tj 6 (t0, oo) is a suitable constant with the property y(0 SS Kfor t e [tt, oo), 
/ ( O 2 l/K. 

First we prove that there exists a constant t2 }> tx such that 

(20) F(t) - / 2 ( 0 - 2j(0 / ( 0 > 0 on [t2, oo). 

Suppose on the contrary that F(t) ^ 0 on [tx, oo). As 

(2D tjwV-M (2 ° V/W /•' 
then 

xo ^ M/2(/), M «. //,) r/2(/.)] -» 
and 

0 £ J"/) = /*(/) - 2 X 0 / ( 0 ^ / 2 ( 0 [1 - 2My"-\ Z 
* y'2(h) [1 - 2M/(/)] — 

and we get the contradiction to (18) for / -> oo. Thus (20) is valid and according 
to (21) 
(22) X 0 £ Af./*(/), /€[/-,«>), Mt - y(t2)[/*(tj]-1. 

Put C - 2max(/(/0), (/(/0))_1). Then according to the assumptions of the 
theorem 

(23) / ( » - ) - - - J ^ d / * J «<(0*0V(0'd,;> 

»» Z(0' ~ * /'(0* 

^2'Jflc(/)X0"+'/(0'"2'd/ = J. 

If y is defined according to 1 °, then by use of (19) and (23) we get the contradiction: 

yXt^-^jzrJaMt^oo. 
t2 

If 2° is valid, then put e -» 0 for a ^ 0, e = | a | for 0 > a > - 1 and according 
to (22), (19) and (23) 

/( la)1 "*• -̂  J 2 2fMf8 J ac(0 /(t)2"*' dt = M2 J ac(0 ty df -* oo. 

A£2 is a constant. This contradiction proves the theorem in this case. 
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Let 3° be valid. Put e =- 0 for p £ 0 and e = p/2 for 0 < p < 2. If follows 
from (23), (22) and (19) that 

y"(t2)
1 ~«£ J £ TM[12 ~e J ac(t) y*+fin At = M2 J ac(t) f At - oo. 

f2 *2 

M2 is a constant. This contradiction proves the theorem. 

Remark 4. The theorem 3 generalizes the results obtained by Kiguradze [2], see 
Remark 3. For some special a and p the results by Kiguradze are more suitable. 

Theorem 4. Let the differential equation (1) have the property Ax and let 
the constants M9 tt and functions aeL(ti9 oo—), g e C0(D2) exist such that 
g(xi9x29x3) > Oforxt > 09a ^ 09\f(ti9 xi9 x29 x3)\ ^ a(t)g(\xt | , |XaM*s! ) 
on D2, D2 = {(/, xi9 x29 x3) : tt ^ . O ^ X j . O ^ x ^ M , / * 2, 3} and 

00 00 00 

J J J a(t) At Ax Ax = oo 
f l T X 

hold. Then (1) has the property A0. 
Proof. According to the Theorem 1 and the definition of the properties A0 

and A% we must prove that for the solution y with properties: y(J) monotone, 
j =-= 0, 1, 2 and 

lim j;(0(0 = 0, i = 1, 2, lim | y(i) \ - C 
t-*oo t->00 

the relation C = 0 holds. Suppose on the contrary that C^O. Let t2 € [ii9 oo) 
be a number with the property 

| y«\t) | S M9 C/Z = y(t) £ 2C, / = 1, 2. 
Then 

I X ' 2 ) l - C = ] | / ( 0 | d f = j ] | / ' ( x ) | d x d T = J J J|/"(0|d(dxdT = 
*2 t% X t% X X 

= ? ? f a(0 g(l XO1.1 / (01.1 y\t) I) d* dx dT = 

= JCj J Ja(OdtdxdT = oo, 
t2 X X 

K « min g fo , x2, x3) > 0, 

where the minimum is taken for C/2 g xt g C, | x J ^ M, i =» 2, 3. 
The gained contradiction proves the theorem. 

Theorem 5. Let y bean oscillatory solution of the I type on [t0, b) and let constant 
M > 0 exist such that for t e [f0, b)9 \ xt\ £ M9 x2e R 

gi(\xt \,\x2\9\x3\) S \f(t9xi9x29x3)\9 x3eR 
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and 
\f(t9xl,x2,x3)\ £g2(\xt \,\x2\,\x3\),\x3\ ..£ M 

hold where gt are continuous, gt(st, s2, s3) > Ofor st > 0. Then lim sup I y'(t) | ^ oo. 
f ->&-

Proof. We shall prove the statement of the theorem by the indirect proof, 
Suppose that 

(24) 1/(01 £K< oo, telt0,b). 

According to (5), (24) and Lemma 2 Fis non-decreasing and 

(25) 0 < F(4) = yf2(ti) £ K2, lim F(t) = Kx S K2, i ** 0, 2. 

First we investigate the case when 

(26) lim.K0 = 0 

is valid. Let k > k0, where k0 is an integer with the property 1X01 S M on 

(C *)• 
Put <Jk 6 (tk9 tk

l) such number that 

(27) I / ( « . - — - . / « * ) I-

According to (3) such a number exists, by use of (25) 

(28) 1/(01 ^ M on [ & « 

holds and with respect to the fact that y' sgn y is concave on \tk> £*] we have 

I rtto I - | yitl) | - J | /(») | d. ^ ------̂ ---- « t - .*)• 

From this and from (26), (25) 

(29) l im«. . - r2 ) -0 . 
K-*oo 

Further, 

I y'(t%
k) | - | yf(ik) I - J I y"(01 df s I / '«*)I.«» - tf)' S 

ѓ M({» - řk
z) - o 

and by virtue of (25) and (27) 

Hm | / ( f ó | - lim |/(tí)|-V--i. 
ft~*oo fc->oo 

(30) lim | /'(«*) I = — V^T-
Jk-»oo 
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Finally, 

"T^ — - 1 l>r(t)|d' <; t |/*(Q|d. , a 
o «a(s) A g,a / ( o i) ~ A «a(i m I, I /(OI, I /(O I) " * " 

g3(s) = max {g2(su s2, s) :0 ^ j , g M . O g i , | / f } , 

that contradicts (29) and (30). Thus (26) is not correct and there exists an infinite 
set At. <= At and K2 > 0 such that 

(31) * \y(tl)\^K2, fceiV. 

holds. Let e > 0 be such that e g K2, e g M. Then according to (4) the sequence 
{ak}, k e At. exists such that 

I j ^ l - e , ateat°,<n 

and by use of (31), (25) and (3) 

(32) 1X01 = 8 on [tt°,at] 

(33) | / ' (0 I = I /(tl) | = - ^ - £ f i , .6 [.*, .rj 
2IX**) I Ki 

hold. Define the sequence {&}, fc € At! in the following way 

Ae[tf.r2), 
(34) I / ( f t ) | = I / ( f t ) | 

and fik = /£ if (34) has no solution fik. As by virtue of (25) and (4) 

0 -»I yXtl) | - | y\t°k) I 5; | y'(0k) I - I / ( # | -'] | /(01 drfc 
k-oo t*V 

= I /'(ft) I (ft - tf) = I /(ft) I (ft - '2)= /1 /(0I dt = I Xft) I, 
» «°k 

(35) limlXft)l = 0, fce/V.. 
* - * o o 

From this and from (3), (34), (33), (32) and (24) there exists on infinite set N2 c Nt 

such that 

I y(h) I £ I y(') I ^ *• I WO I -S K* on [&, afc], fc 6 N3, 

where JC3 « max [ - r r - - M l . 

From this, finally, 

FioQ - r(ft) = - j 2 / " ( 0 XO dt S 2 J g,(| JXO I, | / (01 ,1 fit) I) x 
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x\y(t)\dt*z— Jg4(|j<OI)l/(0|dra:4- I «4«*^. 

g4(s)--=ming1(s,x2,X3), 

where the minimum is taken for 0 <; x2 JU M, 0 g x3 g K3 holds that contradicts 
(25) and (35). The theorem is proved. 

Remarks 5. The Theorem 5 generalizes the similar result of [1]. 
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