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A CHARACTERIZATION OF INDUCTIVE POSETS 

J I Ř Í KLIMEŠ, Brno 
(Received November 30, 1983) 

Abstract. In this paper some aspects of the fixedpoint theory of posets are studied. A new type 
of selfmapping on posets so called ascending mappings is defined. This new concept enables 
to prove a fixedpoint theorem which is a generalization of the Bourbaki's fixedpoint theorem. 
This result is applied to two characterizations of inductiveness for posets. The first one shows that 
inductiveness in semilattices is equivalent to the existence of fixedpoints of extensive mappings 
The second characterization proves the inductiveness property for general posets.| 
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The aim of this short paper is to give some characterizations of inductiveness 
for posets in a way similar to that of A. C. Davis [4]. First we derive our basic 
tool, the fixed point theorem for ascending mappings of an inductive poset into 
itself. Further we discuss the relationship between the inductiveness in posets 
and the existence of fixed points. We also present a related characterization of an 
inductiveness for semilattices in terms of the fixed points. 

Throughout this paper a poset is a partially ordered set and a chain will mean 
a totally ordered set (it may be empty). A lower directed set will mean an ordered 
set having a lower bound for each finite subset. Lower directed subsets must be 
nonempty, since they must contain a lower bound for the empty set. For elements x 
and y of a poset P, x < y means x ^ y and x + y. The set of all lower (upper) 
bounds of a subset Xin a poset P is denoted X+(X*)\ in particular, it is 0* -= P = 
= 0 + and denote (X*)+ = X* +. A mapping/of a poset P into itself is called 
extensive if and only if x g f(x) for every xeP. When we have a family F of 
mappings from a poset P into itself, then we will denote the set of all common 
fixed points of F by Fix(F) = {xeP \ x =/(x) for all feF}. Speaking about 
commuting family of mappings we mean that compositions are commutative. 

Definition 1. A poset P is called inductive (see [5]) if each nonempty chain of P 
has an upper bound in P. 

A poset P is called chain complete if every chain in P has the least upper bound 
in P. 
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Bourbaki's classical result (see [2]) states, that the fixed point theorem for 
extensive mappings holds in inductive posets. We can obtain a slightly stronger 
theorem if extensivity is weakened. 

Definition 2. A mapping/of a poset P into itself is called ascending if x, y e P, 
f(x)<,y implies f(x)<,f(y). 

Theorem 3. Let P be an inductive poset and let f be an ascending mapping on P. 
Then f has fixed point. 

Proof. Let S be a collection of all chains C of P with the following property: 
if x 6 C, then/(x) e C and x ^ f(x). Since/(x) ^ f(x) and/ is ascending, we have 
f(x) < f2(x) for all x e P. Therefore, S is nonempty, because a chain 
{/"(*) I n = -» 2> ...} belongs to _S for all x e P. Let M be a maximal chain in 5 
and let w be any upper bound of M. As x ^ /(x) e Af for all x e M, it follows 
f(x) ^ u and hence x ^ /(x) ^ /(u) for all x e M, since / i s ascending. Thus f(u) 
is an upper bound of M. Further it is f(u) <±ff(u)9 since/is ascending. If there 
were/(w) 4= f2(u), then M u {/B(w) | n = I, 2, ...} would be a chain in S properly 
containing M, and this contradicts the maximality of Af, Therefore f(u) i the 
fixed point of/ 

Corollary 4. (Zermelo [7]) Let P be a chain complete poset and f an extensive 
mapping on P. Then f has a fixed point. 

Proof. Since a chain complete poset is inductive and as every extensive mapping 
is ascending, the proof follows from the theorem 3. 

Corollary 5. (Bourbaki's fixed point theorem [2]) Let P be an inductive poset 
and f an extensive mapping on P. Then f has a fixed point. 

Theorem 6* Let S be an upper semilattice. Then the following conditions are 
equivalent: 

(A) S is an inductive poset, 
(B) each extensive mapping on S has a fixed point. 
Proof. (A) implies (B) by the Corollary 5. To verify that (B) implies (A), assume 

that an upper semilattice S is not inductive. Then S contains a chain C, that does 
not have an upper bound in S. Let U be a well ordered chain cofinal with C. For 
each x € S set U(x) = {u e U | u $ x}, As C* = 0, for every x e S the set U(x) is 
nonempty. We are now ready to define an extensive mapping that does not have 
a fixed point in S. Let us define a mapping /from S into itself according to the 
following prescription: 

f(x) = xv min U(x). 

A mapping/is well defined, since Sis an upper semilattice and (/is a well ordered 
chain. As min U(x) £ x, we have x < x v min U(x) for all x e 5, so/is an extensive 
mapping of S into itself, which does not have a fixed point. 
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Theorem 7. A poset P is inductive if and only if every ascending mapping on P 
has a fixed point. 

Proof. The necessity of a given condition follows from the Theorem 3. To prove 
the converse, assume that P is a poset that is not inductive. Then P contains a chain 
C =f= 0 that does not have an upper bound in P. Let U be a well ordered chain 
cofinal with C. If we set U(x) = {u e U \ u $ x}9 then for each x e P the set U(x) 
is nonempty, since U* = C* = 0. Let us define a mapping / : P -* P as follows: 

f(x) = min U(x). 

Then / is well defined, since U is a well ordered chain. Let x and y be elements 
in P with the property f(x) g y. As f(x) e U9 it follows by the definition of U(y)9 

f(x) ^ u for all u e U(y). Hence we have/(x) g min U(y) = f(y). By the definition 
of/ we have f(x) $ x for all x e P. So / is an ascending mapping on P, which 
does not have a fixed point. 

Theorem 8. Let P be an inductive poset and f g commuting ascending mappings 
on P. Then Fix (/, g) = Fix (fg) is an inductive poset. 

Proof. First we will prove that the mapping h — fg is an ascending one. To 
prove this assertion, let x,yeP9fg(x) g y. A s / i s ascending, it follows fg(x) g 
-S f(y) a1id hence gf(x) ^ g/(y), since g is ascending and g,/commute. Thus 
h(x) <̂  h(y) and h is an ascending mapping on P. 

Applying now the theorem 3, we obtain that Fix (h) is nonempty. To prove that 
Fix (h) is inductive, let C be any chain in Fix (h). As P is inductive, C* ^ 0. If 
y e C*, then h(x) <; >> for all xeC. Hence x = h(x) g hQ>) for all xeC. There
fore h maps C* into itself, so h \ C* is an ascending mapping of an inductive poset-
C* into itself. Applying now Theorem 3 for this case, we obtain a fixed point of h9 

which is an upper bound of C in Fix (h). Thus Fix (h) is an inductive poset. 
Next, we prove that Fix(h) is exactly the set of all common fixed points of/ 

and g. Let x e Fix (h)9 i.e. fg(x) = x. Hence gfg(x) = g(x). As / is ascending, it 
follows g(x) = fgg(x) g fg(x) = g/(x) = x. By reflexivity of g we have gf(x) ^ x 
and hence gf(x) = x g g(x), since g is ascending. By the antisymmetry of ^ we 
obtain x = g(x). Analogously we prove x = /(x). Therefore Fix (fg) c Fix (/, g). 
On the other hand, for any x e Fix (/, g) we have x = g(x) and hence x = f(x) = 
= ./#(*)• Thus Fix (/#) = Fix (/> g) a n d the proof is complete. 

Corollary 9. L ^ P be an inductive poset and f be an ascending mapping on P. 
Then Fix (f) is an inductive poset. 

Corollary 10. Let P be an inductive poset and let F = {/i,/2, ••,/»} be a com
muting set of ascending mappings on P. Then Fix(fl9 ... ,/„) = Fix (F) is an inductive 
poset. 

Proof follows from the Theorem 8 by induction. 
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Example 11. We will show, that for any commuting family F of ascending 
mappings on a inductive poset P a common fixed point of all mappings from F 
need not exist. 

Let P be a chain xt > x2 > ... > x„> ... Let N be the set of all positive integers 
and let us define the mappings/, from P into itself for all n e N in the following 
way: 

лw-fe v,tг 
It is easy to see that F = {/, | n e N} is a commuting family of ascending mapp

ings of an inductive poset P into itself. From the definition of/, it follows at once 
that we have: 

Fix(/B) = {xH,xH+l9 ...} for all n e N. 

But for the set Fix (F) of all common fixed points of all mappings /„ we have: 

Fix (F) = fl F i * (/«) = 0-
ncN 
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