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ORDERED SETS 
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Abstract. In this paper the fixed edge theorem is proved: Let P be a finite, connected partially 
ordered set and f an antitone map of P into itself. Then there exists a fixed edge of / or there 
exist connected subsets C, G of P of length one with I(C) = I(G) = 0 such that f(C) = G 
f(G) = C. Also, if P is dismantlable by irreducib.es then P has the fixed edge property. 
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I 

In a noted paper [6] Tarski has shown that every isotone map of a complete 
lattice into itself has a fixed point. Set P is said to have the fixed point property 
if every isotone map of P into itself has a fixed point. Antitone maps, on the other 
hand, may or may not have fixed points; however under certain conditions such 
maps must have a unique fixed point. The analogous problem for finite partially 
ordered sets has remained largely unexplored. 

Rival [5] published a far-reaching extension: Every isotone map of finite, 
dismantlable by irreducibles9 partially ordered set P into itself has a fixed point. 
In this paper there is introduce a concept of a fixed edge for the mapping of 
a (finite) partially ordered set into itself. The aim of this paper is to investigate 
conditions under which a mapping of a finite poset into itself has a fixed edge. 
The Fixed Edge Theorem is proved: Every antitone mapping of a finite, dismantlable 
by irreducibles, partially ordered set P into itself has a fixed edge. 

Let P be a partially ordered set. Let/be a mapping of a poset P into itself and 
let u ^ v be elements of P. An ordered pair (u9 v) is called & fixed edge off iff(u) == i; 
and f(v) = u. Set P is said to have the fixed edge property if every antitone map 
of P into itself has a fixed edge. 

In a noted paper [l]*Baclawski and Bjorner (also see [4] Kurepa and [3] KlimeS) 
has shown that every antitone map of a complete lattice into itself has a fixed edge. 
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P is called connected if for all a, be P there is a sequence a = a0, ax,..., an = b 
of elements of P such that at is comparable with ai+1 (/ = 0, 1,..., n — 1); other
wise, P is disconnected. 

An element x of a finite poset P is said to cover y in P (or x is an upper cover 
of jor.yisalowercowei of x)if y < xandj < z ^ x implies z = x;xis irreducible 
in P if x has precisely one upper cover or precisely one lower cover in P. 

A nonempty subset Q of P is obtained from P by dismantling by irreducibles 
ifP\Q = {a1,a2,...,an} and 

ai e I(P\{a!, a2,..., a,_ t}), (/ = 1 ,*2,..., n), 

where I(P) denote the set of irreducible elements of P. We call P dismantlable by 
irreducibles if a singleton subset of P is obtained from P by dismantling by 
irreducibles. Note that a dismantlable partially ordered set is connected. For 
n ^ 4 a subset C = {cl9 c 2 , . . . , c„} of P is a crOww provided that ^ < cn and 
cX < c2,c2 > c 3 , . . . , c„_2 > c„_X, c,,.! < crt are the only comparability relations 
that hold in C and, in the case n = 4, there is no a e P such that ct < a < c2, 
c3 < a < cA (see Rival [5], Fig. 1). 

C2 C4 cn . 2 c n 

Cfil 

Fig . 1 

The following result is proved in [5]. 

Theorem 1. (Rival [5]) Let P be a finite, connected, partially ordered set of length 
one. The following conditions are equivalent: 

(FP) P has the fixed point property, 
(DI) P is dismantlable by irreducibles, 
(NC) P does not contain a crown. 

II 

Let (P, ^ ) be a partially ordered set. For x,yeP and x < y, the set] x,y[is 
defined by 

] x, y[ : = {/: / e P and x g / g y). 

We begin with a statements for conditionally complete sets (that is, every non
empty subset of P with upper bound has its supremum). 
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Lemma 1. Let (P, <I) be a partially ordered set and f an isotone mapping from P 
into P such that: 

(A) f has a fork i.e. a <I f(a) 51 f(b) 51 b for some a, b e P, 
and 

(B) The set ] a, b[ (or P) is a conditionally complete. Then the set P(f) : = 
: = {x e P: f(x) = x} is nonempty. * 

Proof. Since a <; f(a) for some aeP, then we have a <I f(a) <£ f(f(a)) <I 
< ! . . .< ! f(b) <i b. Hence, the set S of elements x = /"(a) e ] a, b[ for n = 
= 0, 1,2,. . . , such that x <I f(x) is nonempty and bounded from above, and 
s = v s exists, by conditionally completeness of ] a, fc[. Since f. P -+ Pis isotone 
and x <I s for all x e S, x = f(x) <I f(x) for all x e 5 ; hence s = v S <I f(s). Since 
fis isotone, it follows, that f(s) <I f(f(s)) whence f(s) e S. But this implies f(s) <I s, 
since s =vS. We conclude s = f(s) i.e. seP(f), therefore P(f) is a nonempty. 
This completes the proof of Lemma 1. 

Lemma 2. (Fixed Edge Lemma) Let P, g ) be a conditionally complete partially 
ordered set and f an antitone mapping from P into P such that f has a fork type 

(C) a <I f(b) S f(a) = b for some a, be P. 
Then there exists a fixed edge (u, v) of f and there exists an u with the least element 

in ] a, b[ such that (u, f(u)) is the fixed edge off 
Proof. Let A = [xe] a, b[: x = f2(x)} and B = { x e ] a, b[ : f2(x) <I x}. 

Hence, from (C), 

A^{a,f(b),f\a),f\b),f\a),...}, 
and 

5 3{6 , / (a ) , / 2 ( f t ) , / 3 (a ) , / 4 ( fc ) , . . . } . 

The sets A, B are bounded. Let u = A B and v == v A. According to Lemma 1 
we can see that u = f2(u) and v = f2(v\ since f2 is an isotone mapping. Hence 
u,veB and therefore u <I v. The preceding argument, which is due to Lemma 1, 
shows that f(w) e A and f(v) e B. Hence, u <; f(v) <; f2(w) = u9 f2(v) = v <I 
<I f(w) <I t?. It implies u = f(v), v = /(u) , i.e. (u, t;) is a fixed edge of/. If (x, y) 
is any edge of / with x,7 e ] a, b[ then xe B. Hence w <I x, which completes 
the proof. 

Lemma 3. Let P be a finite partially ordered set and f an antitone map of P into 
itself IfP is dismantlable by irreducibles then P is a conditionally complete set andf 
has a fork type (C). 

Proof. It is simple to prove that every finite dismantlable by irreducibles set 
is conditionally complete, so we omit the proof. Now let us prove that / h a s a fork. 
We proceed by induction on the number of elements of the set P, i.e. Pn (n e N). 
For n = 2: P2 = {ct, c2} is a connected set by the figure 2. The only three possible 



M. R. TASKOVlC 

antitone mappings of the set P2 into itself are f(cx) = c2, f(c2) = Ci or f(ct)
: 

f(c2) = c2 or f(ct) = cl9 f(c2) = ct. All these mappings have forks. 

C2 

Fig . 2 Fig • 3 

The inductive hypothesis is that the statement is true in the case of n — 1 
elements set Pi.e. P„_ t. If P has n elements, then every antitone mapping f: Pn -* Pn 

has a fork since the restriction (offon P„_i)f| P„-i has a fork (by the inductive 
hypothesis). Therefore the extension of that mapping/to Pn has a fork. This proves 
the statement. 

Remark. The following will show that P contains no crown i.e. dismantlable by 
irreducibles of Lemma 3 may be dropped. 

Example. Define posets Pn for n = 4 by the diagram of Fig. 3. Then, P4 is 
finite, connected partially ordered sets of length one with a crown and P4 is a not 
conditionally complete set. Let / : P4 -> P4 defined by f(ax) = al9 f(a2) = a3, 
f(a3) = a49 and f(a4) = ax. Then f is an antitone mapping without forks (C). 
Also / has not fixed edge. 

An immediate corollary of the preceding statements i.e. Lemma 2 and Lemma 3 
is the following result. 

Theorem 2. (Fixed Edge Theorem) Let P be a finite partially ordered set and f 
an antitone map ofP into itself IfP is dismantlable by irreducibles then there exists 
a fixed edge off. 

Also, an immediate corollary of the preceding Lemmas, Theorems 1, 2 and some 
results of [5] is the following statement. 

Theorem 3. (Fixed Edge Alternative) Let P be a finite, connected partially ordered 
set and fan antitone map ofP into itself. Then there exists a fixed edge of for there 
exist connected subsets C9G of P of length one with 1(C) = 1(G) = $ such that 
f(C) = G,f(G) = C. 

Proof of Theorem 3. Let g := f2 and Q := g"(P) be the subset of P guaranted 
by Lemma 8 of [5] and let G be the set of all elements maximal or minimal in Q. 
Also, from [5], Lemma 7 ensures that G is connected. Moreover, since g \ Q is 
an isomorphism, f2(G) = G. Let G = G0 -3 Gt r> ... 3 Gn = C be the maximal 
descending chain satisfying Gi^i\Gi = /(Gj-i). Since g \ G is an isomorphism we 



EDGE THEOREM FOR FINITE PATR1ALLY ORDERED SETS 

have that f2(/(G)) = 1(G) and iterating f2(/(Gi-i)) = 7(G,-i) for each i = 1, 
2 , . . . , n\ hence f2(C) = C. Hence, f2(C) = C c G = f2(G). Analogous the proof 
of Lemma 2, also, we have C c f(G) c f2(C) = C and f2(G) c f(C) c G. 
It implies C = f(G) and G = f(C). Also, by [5], C and G are nonempty and 
connected. Finally, the maximality of the chain implies that 1(C) = 1(G) = #. 
This proves the theorem. 

This proof is analogous of the proof of Proposition 9 of [5]. 
We want to remark that the corresponding assertion by Rival (Proposition 9 

of [5], p. 317) can be proved in another way. Namely we can apply the Lemma 1 
and the same method as in the proof of the Theorem 2. 
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