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MULTIPLICATIVE SOLUTION THEORY 
FOR THREE-PATH COMBINATIONS 

F. M. ARSCOTT 

(Received June 7, 1989) 

To Professor Otakar Boruvka, whose elegance and sublety in research on differential 
equations command my everlasting respect 

Abstract A multiplicative solution of an ordinary linear differential equation is one which, 
when continued analytically along a closed path in the complex plane, returns to its starting-
point multiplied by a constant. This paper extends the work in [1] to give a number of results 
relating to combinations of three paths. This has particular relevance to doubly-periodic equations 
and to equations of Heun type. An application to Lamp's equation is discussed; 
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1. I N T R O D U C T I O N 

The basis of multiplicative solution theory is given in [1], [2], and the notation 
here used is given in [1]. To summarize: we have a linear, homogeneous second-
order equation 

(1.1) Lt(y) = 0, 

for which Cx and C2 are basic paths. Our concern is with the case when Cx, C2 

are both of type /, and we* are in the "regular" case ([1], para. 7) so that the com­
bination path C12 is also of type I and there is no solution multiplicative for both 
C1 and C2. 

We have the two standardized solution vectors y1)2 and y2>1, each defined up to 
a multiplicative constant, such that yitj is multiplicative for Ct and has specially 
simple behaviour on Cj9 though not multiplicative there. Precisely 

Ct Cj 

u.2) yw+syw yi,j-+Li,jyi>j> 
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where 

(1-3) S ' - ( ( T I,2)' Li.J = PjI+4jMW 
in which we use the notation 

<1.4) 2Pi = sP> + Sp>, . 2q, = ^ - s<2>, rt = s?>s™ 

and 

0.5) M W = fC°S
fl

6' SiD* Y 
\sin0 -cos 9 J 

The quantity 9 = 0O- is called the link parameter between Ct and C,: it is known 
that 9U = 0;f. 

Between these two standardized solution vectors there holds the relation 

<l-6) y2,i = cMU-o\yU2, 

where c is a scalar constant, necessarily undetermined since ylt2 and y2fl
 a r e e a ch 

defined only up to a scalai constant multiple. 

2. RELATION BETWEEN S T A N D A R D I Z E D 
AND MULTIPLICATIVE SOLUTIONS 

No component of yit2 ° r of y2ti is multiplicative for the combined path C12. 
Yet C12 is a basic path, so has alwa>s at least one multiplicative solution and, on 
the assumptions made heie, a multiplicative solution vector which we denote 
by z12. (This is, of course, determined only up to a constant diagonal matrix.) 
We now investigate the relation between this vector and the standardized vector ylt2. 

In principle, the connection is simple. A path matrix for C12 is the product 
Xlt2 := StLLt2. Since, by hypothesis, C12 is of type I, the Jordan form of Xlt2 

is diagonal, and we have matrices Wli29 Dl2 such that 

<2.1) . XU2 = S.L^ = Wlt2D12W^2. 

Then a multiplicative solution vector zit2 for C12 is given by 

(2.2) (2.3) zU2:=Wit2
1ytt2=>zU2^Di2zlt2. 

The matrix Xlt2 is found to be (writing 012 = 0 for short) 

, 2 A \ (s[l\P2+ 12 cos 0) s[t)q2sin9 \ 
X ' } \si2)«2 sin 9 s\2)(p2 - q2 cos 9)) 
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with eigenvalues given by the roots of 

(2.5) s1 - 2{plp2 -b qiq2 cos 9) s + rtr2 = 0 . 

Thus the path matrix Z)12 for C12 can be obtained. 
A similar analysis can be carried out, starting with the standardized vector y2ti 

which on C12 is multiplied by L2tlS2. In this way we get a matrix W21 such that 

(2.6) L2AS2 = W2tlDi2Wl\ 

and, taking 

(2.7) z2y.^Wl\y2A9 

22fi is another solution vector for C12: in general, it is not the same as zit2 but 
a multiple of it by a diagonal matrix. 

There is a special case, however, in which one can easily carry the analysis 
further, namely when Ct, C2 are elementary paths, and this case is of sufficiently 
frequent occurence to be worth setting out as a theorem. 

Theorem 1. Let Ci9 C2 both be elementary paths {i.e. with S = diag(l, —1)) 
and in the regular case with C12 also of type L Let the link parameter between C\, C2 

be 9i2 = 6. Let yit2,y2,i be the standardized solution vectors. Then: 
(i) the path factors for Cl2 are exp (±/0), 
(ii) a multiplicative solution vector for C12 is 

<2.8) *u2-GyU29 where G = - L ( j ~%\ 

(hi) another multiplicative solution for Ci2 is 

<2.9) z2>1:= Gy2,l9 

where G denotes the complex conjugate of G. 
The proof involves only straightforward linear algebra and is omitted. 

Corollary. Since z} t2 and z2ti are both multiplicative solution vectors for the same 
path, we expect them to be related by a diagonal matrix. Use of (2.8), (2.9) and (1.6) 
confirms this, giving {with a little working) 

(2.10) '2 ,1 

where c is the constant occuring in (1,6). 
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3. THREE PATHS: THE DILATION PARAMETER 
AND THE SPHERICAL TRIANGLE THEOREM 

For the equation (1.1) Lt{y) = 0, satisfying the conditions assumed in [ l ] y 

para. 11, let Ci9 i = 1, 2, 3, be basic paths, such that any number of these can be 
described successively, in any order. As usual, we denote the combination of 
paths Ci9 Cj, described in that order, by Cij9 with the obvious extensions of this 
notation. 

We now make the following assumptions: 
(A) each path C, is of Type I, with path factors s\r\ r = 1, 2, s^ # s\2\ We 

use again the p9 q, r notation as in (1.4). 
(B) each path combination CfJ- (i9j = 1 , 2 , 3,4 # j) is also of type I, hence there 

is no solution multiplicative for both Ct and Cy9 in the terminology of [1], para. 7, 
we are in the "regular" case. The „link parameter" between Cf and Cj is denoted 
by Oij (recall that 0M = 0Ji9 [1], theorem 3). 

We thus have the standardised solution vectors yitj9 determined up to a scalar 
multiple, such that 

Ct Cj 

(3.1a, b) yitJ - Siyitj, yitj -> LttJyu, 

where Si9 LifJ and M(0) are as in (1.3), (1.5). 
It should be noted that we make no assumption regarding the nature of the 

three-path combination Cijk. 
It is convenient to introduce notation for a new matrix. We write 

(3-2) *(*):-(£ '-,)• 

observing that 

(3.3) ^(a)"1 = # ( -a ) . 

Now consider two standardised solution vectors yitJ-a.nd yith (i,j\ k all different)* 
Since these vectors are each multiplicative for the path Ci9 and this is of Type I, 
they must be related by a diagonal matrix, which we denote by Dit Jk9 i.e. so that 

(3.4) . yitj = Di>jkyitk. 

It can be shown th t̂ DiJk may be expressed in the form 

(3-5) 0 u = ^ ( y * u * ) . 

where A e C aftd the parameter \l/iiJk is determined uniquely in the region 

(3.6) Re^ f >^€(~Jt,«]. 
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Thus the parameter \l/iJk expresses the connection between the standardized 
solution vectors yitJ and yitk which have Ct as a common multiplicative path. 
We call DiJk the dilation matrix and r̂, jk the dilation parameter between CtJ 

and Cik. Between the three link parameters 0O«, 0jk, 0ki and the three dilation 
parameters ^itjk, ^jtki, *A*,o' subsist relationships which form the basis of three-
path theory. 

We note, in passing, that from (3.4) 

(A-,,*)-1 = DitkJ. 

Since N(il/ifJk) and N(\l/itkj) are appropriate multiples of DiJk and DikJ, on 
taking account of (3.3) 

(3.7) il/iJk = -\l/iskj. 

The two following theorems are fundamental to the 3-path theory. They were 
given in [2], but it has been found that they hold only under stricter conditions 
than there stated. In [ l ] the theorems are correctly stated but without proof. 

Theorem 2. (The spherical triangle theorem) 
On the assumptions (A), (B) above 

(3.8) cos 0U = cos 0ik cos 0jk + sin 0ik sin 0jk cos ^f> jk. 

Proof. We consider the result of continuing the solution vector yitJ around 
the path Cjk. We have 

ck 

(3.9) yLk-*Li.*yt,k* 

and from this and (3.4) ., 
ck _ ' 

yij-> Di,jkLitk(
Di,jk) lyi,j-

From this and (3.1b) 
cJk 

yi,j-*Li,JDi,jkLi,k(Dijk) lyi,j-

Recalling (3.5) and wiiting for short 

(3.10) Ndki.jk) = NiJk9 

the (non zero) constant X in (3.5) now falls out and we have 

c ^ • • ' 

(3.11) yitj^ LitjNiJkLitk{NiJky
lyitj. 

Hence L ^ - A ^ ^ L ^ A ^ ^ ) " 1 is a path matrix for Cjk. But so also is SjLj%k> and 
these two matrices must be similar, hence 

(3.12) tr lLUjNiJkLU*rM = tr [S^ . J . 
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Some tedious but quite straightforward working now gives the required results 
This result, in a different notation, was given in [2], as Theorem 6. It is funda­

mental to further work on three-path combinations; because of the similarity of (3.8) 
to the standard analogue of the "cosine formula" of spherical trigonometry, it is 
convenient to refer to this result as the „spheiical triangle theorem". 

We can now show how the path factors may be determined for the three-path-
combination CiJk. 

Theorem 3. The path factors for the path Cijk are the roots of the equation 

(3.13) s2 - 2As - /y/ fc = 0, 

where 

(3.14) A = PiPjPk - iqafaN + £ (M , .^ cos 9jk), 

the symbol £ denoting the sum of the three terms with i9j, k cyclically permuted*, 
and iJ'k 

N = sin 9ij sin 0jk sin \I/Jtki = sin 0Jk sin 9ki sin i//kt {j = 
(3.15) = sin 0ki sin 9tJ sin *l/iJk. 

Proof. Consider the solution vector ylf2 taken first around Ci9 then around Cjk.. 
Using (3.1), we see that a path matrix for Cijk is 

(3.16) . S^jN^LUNij.y1. 

The determinant of this matrix is easily found to be /y / k ; to evaluate its trace is. 
longer but not difficult and readily yields the value 2A, where A is given in (3.14):. 
in the evaluation, (3.8) must be used. Hence (3.13) is obtained with N given by 
the third expression in (3.15). The other two expressions follows from identical: 
reasoning with /, j , k cyclically permuted. 

4. APPLICATION TO THE LAME EQUATION 

Consider the Lam6 equation in its Jacobian form ([3], Chap. IX, [4], Chap. XV> 

(4.1) w\z) + (h - v(v + 1) k2sn2z) w[z) = 0, 

where fee(0,1) is the modulus of the Jacobian elliptic function snz = sn(z, k)>. 
v is the order of the equation and h is a parameter. 

Since the coefficients of (4.1) are doubly-periodic with real period 2K, imaginary 
period 2iK\ in the usual notation, we are naturally interested in the properties, 
of solutions of (4.1) with respect to these periods. 

By means of the transformations 

(4.2) t = sn2z, w(z) = j<r), a = k^2(e(l oo)) 
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the equation (4.1) takes the form 

t(t - 1) (f - a) y\t) + 1 (3*2 - 2(1 + a) t + a) y'(t) + 

(4.3) 4 - 1 (a// -v(v + 1)0X0 = 0. 

This equation has three elementary finite singulaiities, namely at t = 0, 1 and ar 

(the exponents at each being 0 and \) and a regular singularity at oo with 
exponents — \ v, \ (v + 1). It is found that properties of parity about the points 
z = 0, K, K + iTT, i.e. the substitutions 

(4.4)- z - * - z , K + z-+K-z9 K+ iK' + z-+K+ iK' - z 

correspond to propel ties on the elementary circuits C0,Cl9 C'a about t = 0, lr 

a respectively. 
Properties of periodicity with respect to 2K, 2iK'9 i.e. the substitutions 

(4.5a, b) z -* z + 2K, z->z + 2iK' 

correspond respectively to the combination paths C01, Cla. 
We now assume that Col9 CU9 C0a are all of type I. It follows that, on C0lr 

the path factors are complex conjugates exp(±/ct>), and on C l a they are also 
complex conjugates exp (±7CD')> where 

(4.6) co:= 0oi, <»' := 0la. 

These two parameters are fundamental to the development of a global theory of 
Lamp's equation. 

Let us pause to consider the relation of these assumptions to the equation in the 
original z-foim (4.1). The existence of solutions z{^0(t) of (4.3) which are multi­
plicative for C t 0 with path factors exp(±/co) implies the existence of solutions. 
wu\z) of (4.1) such that 

(4.7) wilh c2)(z + 2K) = exp ( ± ico) w(1)' (2)(z), 

which we call 2AT-miiltiplicative. The assumption that C01 is of type I, with its-
consequence that co =}= 0 mod. n, means that there is no solution of (4.1) which 
has 2K as period or antiperiod: instead, there is the pair of 2A>multiplicative solu­
tions given in (4.7). 

The corresponding assumption that Cla is of type I, with the consequence that 
ca' ^ 0 mod 7i, leads to similar statements with respect to the UK' — periodicity 
of (4.1); there exist solutions wa)(z) such that 

(4.8) <v(1)'(2)(z + 2/K')==exp(±iV)iv(1)'(2)(z). ' ; 
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Considerable interest attaches to the possibility of coincidence of one (perhaps 
two) of wU)(z) with one (possibly two) of ivU)(z), giving a doubly-multiplicative 
solution of (4.1), i.e. multiplicative for both 2K and 2iK'. A rather intricate analysis 
([5] para. 15.6) by complex-variable methods shows that such coincidence can 
happen only for integral values of v, but this fact emerges simply from the discussion 
which follows. 

We'return to consideration of (4.3), and make use of theorem 3, identifying 
Ci9 Cj9 Ck with C0, Cl9 Ca respectively. It is clear that the combined path Cou 

is equivalent to a negative circuit about oo. Now, provided only that v is not half 
an odd integer, C^ i$ a type I path, with path factors exp (nv), — exp ( — TIV), and, 
since the components of Cou are all elementary paths for which p = 0, q = 1, 
r = — 1; it follows from theorem 3 that 

(4.9) N = sin TTV. 

The common element to the paths C10, Clfl is, of course, C l 5 so we naturally 
consider the standardized solutions ylt0 and y1>a. The connection between these 
standardized solutions depends on the dilation parameter \j/li0a, which we write 
as \j/ for short. Then (3.15) gives 

(4.10) sin co sin co' sin \j/ = sin rcv. 

More precisely, the connection is (by (3.4)) 

yi,o = Nl — \l/Jyiia, 

the arbitrary constant X being irrelevant, and since C0,Cl9 Ca are all elementary, 
by Theorem 1 the multiplicative solutions for Ci0, Cia are linked by 

which reduces to 

(4.11) z i ; o -

The formula (4.10) is a key result. Of the four parameters involved, v is the order 
of the equation, co and co' are fundamental to the equation since (by (4.7), (4.8)) 
they govern the behaviour of solutions of the z-equation with respect to the periods 
2K> 2iK\ The remaining parameter \j/ expi esses, in essence, the connection between 
the two vectors of solutions with this special behaviour. 

Development of this analysis must, unfortunately be deferred to a Subsequent 
paper, but one result can be noted. Let v be nonintegral; then (4.10) shows that 
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sin \jf 7* 0, and (from (4.11)) it is impossible for ylt0 and yit0 to coincide. Hence 
a doubly - multiplicative solution cannot exist if v is non-integral. 

It should be stressed that this section has been concerned only with the most 
regular case of Lamp's equation, when there are no solutions even singly-periodic* 
But there is reason to expect that suitable modifications to the analysis—allowing 
Co J > Cu o r Coo t o be type II paths, for instance-will enable the more intricate 
special cases to be handled on similai lines. 
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